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WHY BUILD A 

MATHEMATICAL 

MODEL?

• Simplifies the Complexity – Real Systems are 

usually too complex to obtain an exact 

mathematical representation

• Tangible Results – Simplified models still tell 

us important qualitative or quantitative 

information

• An example of  this is the classic model of 

supply and demand



BIOLOGICAL BACKGROUND

Generalist Macrophages

• One of the body's primary responses to an infectious 
disease

• Destroy pathogens by engulfing them which destroys 
the pathogens 

• Continuously originate from hematopoietic stem cells 
in the bone marrow

• Have a Limited lifespan

Pathogens
• A pathogen is any microbe that invades and then 

multiplies within a host body, causing illness

• Most pathogens also work to bypass a host body's 
defenses

• Pathogens multiply by using the resources found in 
the host body 
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Pathogens

Macrophage



FORMING A FIRST MODEL
Building a mathematical model for modeling how pathogens and macrophages 

interact 
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FORMING A FIRST MODEL
OUTLINING THE MODEL

• Mechanistic models are based on physical laws that prescribe the rate of  change of  the state 

variable in terms of the value of  the variable.  This differs from empirical models, which try to 

fit equations to data.

• For this model, we will use a system of  autonomous differential equations in which our initial 

system will contain two equations:

•
𝑑𝑃

𝑑𝑇
= 𝑓1 𝑃, 𝐺   This equation will represent the rate of  change of  the pathogen population with 

respect to time

•
𝑑𝐺 

𝑑𝑇
= 𝑓2 𝑃, 𝐺 This equation will represent the rate of change of  the macrophage population 

with respect to time
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FORMING A FIRST MODEL:
ASSUMPTIONS

•  Pathogen Growth is Logistic: Pathogens have a maximum carrying capacity, and as the 

pathogen population approaches its carrying capacity, the growth of  the pathogen population 

slows down. 

• Macrophages Growth is Constant: The rate at which macrophages grow is constant

•  One-to-One Killing: Every time a macrophage hunts and destroys a pathogen, the 

macrophage itself  also gets destroyed
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FORMING A MODEL: BUILDING EQUATIONS

𝒅𝑮

𝒅𝑻
 = 𝜹 − 𝝈𝑮 − 𝝁𝑮𝑷

• 𝛿 – delta represents the constant growth of  the 

macrophage population

• 𝜎- sigma represents the natural death rate of the 

macrophages

• 𝜇 – represents the rate at which macrophages hunt 

and destroy pathogens

𝒅𝑷

𝒅𝑻
= 𝜶𝑷 𝟏 −

𝑷

𝜷
− 𝝁𝑮𝑷

• 𝛼 - the growth rate of  pathogens 

• 𝛽- the carrying capacity of  the pathogens 

• 𝜇 –  represents the rate in which macrophages 

hunt and destroy pathogens
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SCALING A MODEL
Reducing the complexity
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FORMING A MODEL:
ONE MORE STEP

Using the exact number of macrophages and 

pathogens when trying to model a system has its 

downfalls

• Intuitive Meaning – 7,000 pathogens 

means nothing until you know the max; 

70 % of  capacity is more understandable.

• Parameters – Our scaled model has 

dimensionless parameters that can be 

interpreted as ratios of  process strengths 

rather than scale-dependent constants

• Units – The Model explains the process 

regardless of  the unit choice 

We can fix this scaling in our model through the use 

of clever variable substitutions
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SCALING A MODEL:
SETTING UP THE EQUATIONS

We can scale a model by three 

useful substitutions 

• g = 
G
𝛿

𝜎

 

• p = 
P

𝛽

• t = 𝛼T
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Defining the new Parameters:

• b = 
𝜎

𝛼
 

• m =  
𝜇 𝛿

𝜎 
, 

• r =  
𝜇𝛿

𝛼𝜎

The new system has 

parameters as 

combinations of  the old 

system parameters



SCALING A MODEL
SCALED PARAMETERS MEANING

• b = 
𝜎

𝛼
 , relative strength of  macrophage death vs. 

pathogen growth

• m =  
𝜇 𝛿

𝜎 
, macrophage killing strength 

normalized by its death rate.

• r =  
𝜇𝛿

𝛼𝜎
, macrophage killing rate scaled to 

pathogen production.
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ANALYSIS
With the model scaled now it is time to analysis the model
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ANALYSIS:
NULLCLINES ANALYSIS

Since explicitly solving the system of  

differential equations isn’t possible, we can 

try to draw a phase plane of  the Pathogen-

Macrophage Plane by:

1. Graphing the lines of  where each 

equation equals zero

2. Figuring out whether each derivative is 

positive or negative in each section made 

by the nullclines 

By doing this, we can see the equilibrium and 

how points move around the system
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ANALYSIS:
FINDING EQUILIBRIA

To analytically find how many equilibrium 

points there are, we can use the following 

method:

• Set the two nullclines equal each other

• Build a quadratic equation and then solve 

the quadratic for its roots

• Check when the vertex is negative, and 

when the two endpoints f(0) and f(1) are 

both greater than or equal to zero
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ANALYSIS

VERIFICATION
Plotting different m values for a set of values we 

can see the three different cases:

• Two Solutions: For a given m, if  r is too small, 

there will be two solutions

• One Solution: Not likely in the real world, as 

there would have to be an exact parameter 

match

• Zero Solutions: If r is big enough, there will be 

no epidemic solutions
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ANALYSIS
STABILITY

Knowing if  the equilibria exist and how many exist is important, but a question that is just as important is the stability at  those points.

• Stable – trajectories tend towards and stay at the equilibrium point

• Unstable- trajectories move away from the equilibrium point

• Saddle Point – some trajectories approach along one direction, others diverge along another.
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ANALYSIS
JACOBIAN ANALYSIS

• The Jacobian is the matrix of  first‐order 

partial derivatives, giving the local 

linearization of  our system

• Evaluating the Jacobian at each 

equilibrium and examining its eigenvalues 

allows us to classify the stability of  the 

points

• We can also use other methods alongside 

the Jacobian to find the stability
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•Evaluate JJJ at each equilibrium and examine its eigenvalues to classify stability.”



ANALYSIS
DISEASE FREE EQUILIBRIUM

• Disease Free Point (0,1) – The line p = 0 

is where there are no pathogens and thus 

is disease-free. 

• Stability – This point is stable if  r > 1

• Meaning – this means that for any small 

infection with pathogen-macrophage 

values near this point, the infection gets 

cleared
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ANALYSIS
ROUTH–HURWITZ CRITERION: ENDEMIC 

SOLUTION

• Our equilibria occur when the nullclines 

cross which is where both 
𝑑𝑝

𝑑𝑡
 and 

𝑑𝑔

𝑑𝑡
 are 

equal to zero

• We can use our Jacobian to analyze the 

stability of  these points

• For our system, the points are only stable 

if  the p value for the equilibrium point 

meets the following criteria
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ANALYSIS

VERIFYING  MODEL 

• Since r is small enough, we have two 

endemic solutions

• The larger equilibrium point is the stable 

point

• The smaller one is unstable

• Depending on your starting point, you 

end up in different places
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A BETTER MODEL
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A BETTER MODEL
FLAWS OF OUR FIRST MODEL

• Infections almost always persist - Our model requires an unrealistically high clearance 

threshold for r , so pathogens rarely die out. This is not reflective of  the real world where 

people’s immune systems usually clear a virus

• New Assumptions – We can fix this by making new assumptions or adding new components 

that better reflect our actual immune systems

• New Results – With a new model built with new assumptions, we can analyze it in the same 

way to hopefully uncover new insights about the immune system
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A BETTER MODEL
NEW ASSUMPTIONS

Now that we have decided to make a new model, we must decide what assumptions we want to keep, add, or 

disregard

List of New Assumptions:

1. Different Forms of Growth - Generalists grow at a constant rate, specialists grow in response to the 

number of  pathogens

2. Limited One-to-one killing - Every time a generalist hunts and destroys a pathogen, the generalist 

macrophage itself  also gets destroyed, but not for the specialist macrophage

3. Zero Inter-Macrophage Interaction – The two different macrophages don’t directly interact with each 

other 

5/22/2025
              

23



A BETTER MODEL
BUILDING THE MODEL

• With our assumptions made, we can now 

build a new model

• Our first two equations stay the same 

except for an interaction term between the 

specialist macrophages and the pathogens

• Our specialist with one term that is the 

growth rate in response to the number of  

pathogens, and another with its death rate
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A BETTER MODEL
SCALING

• Scale the model – since we have built 

the new model, we can now scale it

• Results – this scaled model is very 

similar to the original except for two 

terms

• Important Parameter – The more 

important scaled parameter in this new 

model is k, which represents how many 

pathogens a newly recruited group of 

specialists clears over its lifetime.   
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ANALYSIS: NEW MODEL 
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A BETTER MODEL
NULLCLINES

• The first step to analyzing this model is to 

find the nullclines of  this system of  

equations.

• An equilibria point occurs in this system 

when all three nullclines are equal to zero

• We can use the fact that nullclines are all 

equal to 0 to manipulate these equations
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ANALYSIS: NEW MODEL 
WORKING WITH THREE EQUATIONS

• We can use the first two equations to 

eliminate s and g from the third equation

• This gives us a cubic equation in terms of  

the pathogen population

• Where this cubic equation’s zeros lie are 

the p values where there are equilibria

• However, explicitly finding 

understandable and meaningful formulas 

for a cubic equation is difficult
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ANALYSIS:
NEW MODEL WORKING WITH THREE 

EQUATIONS

• Even though directly solving the cubic for 

p is impractical, we exploit the system’s 

nullcline structure to simplify the 

analysis.

• Using each nullcline, we derive two 

equivalent expressions for the expression 

rg

• When there is exactly one equilibrium, 

those nullclines intersect at a point 

tangential to each other

• This means that their derivatives are 

equal
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ANALYSIS: NEW MODEL
THE RESULTS

Since we have added a third equation, 

we can’t solve for r(m) so that there is 

one equilibrium point

But when setting the generalist and 

pathogen nullclines equal, and 

enforcing a double root,  we can find  

r(m,p) and m(p) such that there is one 

solution
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ANALYSIS: NEW MODEL
RESULTS

From this plot, we can see that when 

introducing a specialist, the needed value of  r 

is greatly decreased. 

This graph shows us the three distinct 

regions:

1. Both models clear disease

2. Need the specialist to clear the disease

3. Do not need the specialist
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No Endemic equilibria, 

baseline immune system 

model clears infection

Needs specialist to 

clear disease

Even with specialist 

you lose



CONCLUSIONS
INTERPRETING THE RESULTS

• Response Lowers the Bar for Clearance – 

The response mechanism of the specialist 

lowers the need for an initial string generalist 

macrophage

• Adaptive response – This adaptive response 

mirrors the real-world immune system as it 

gets better at fighting pathogens as it destroys 

more of  them

• Take Away – Our immune system is able to 

clear so many diseases not because of  an 

initially strong macrophage attack, but 

because of  a strong immune system response
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No Endemic equilibria, 

baseline immune system 

model clears infection

Needs specialist to 

clear disease

Even with specialist 

you lose
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THE END

Questions?
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