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Conventions

I am assuming knowledge of commutative rings at the level of an introductory graduate
course in Commutative Algebra, e.g. UNL’s Math 905.

We stipulate that throughout the course

• all rings are commutative, unital, and nontrivial, meaning that 0 6= 1.
• all ring homomorphisms R→ S are assumed to map 1R 7→ 1S
• we will work over an algebraically closed field k, unless specified otherwise
• k[x1, . . . , xn] denotes a polynomial ring in n variables x1, . . . , xn with coefficients

in k
• given f ∈ k[x1, . . . , xn] and a = (a1, . . . , an) ∈ kn, f(a) = f(a1, . . . , an)
• given f ∈ k[x1, . . . , xn] written as a finite sum f =

∑
αmx

m1
1 · · ·xmn

n with αm ∈ k,
we denote

deg(f) = max{m1 + · · ·+mn | αm 6= 0}
• given a = (a1, . . . , an) ∈ kn, [a] ∈ Pnk denotes the equivalence class of a, that is,

the set [a] = {λa : 0 6= λ ∈ k}
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Chapter 1

Affine varieties

Wednesday, January 22

What is this course about?

In this course we will study systems of polynomial equations in several variables.
Many sets have a natural description as solutions of such polynomial systems.

Example 1.1. Consider the set X of 3× 4 matrices with entries in C of rank at most
two. We can think of each such matrix as a point in C12 via the bijective correspondence

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


↔ a =

(
a11 a12 a13 a14 a21 a22 · · · a34.

)

Observe that

X = {A ∈ M3×4(C) | ∆1(A) = 0,∆2(A) = 0,∆3(A) = 0,∆4(A) = 0},

where ∆1, . . .∆4 are the 3× 3 minors of A which are polynomials in the aij. Thus X is
the set of solutions to a system of 4 polynomial equations of degree 3 in 12 variables.
As we will soon see, this makes X a variety.

We can ask:

• What is the dimension of X? At this point use your intuition from linear algebra
for what dimension may mean, stipulating that the dimension of the solution
space of a system of equations is the number of free variables we need to write
down the general solution.

I claim that the dimension of X is 10. Why? Say A ∈ X. Because the rank of A
is at most 2, we can find α, β ∈ C so that

(
a31 a32

)
= α

(
a11 a12

)
+ β

(
a21 a22

)
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and moreover, the values of α, β are determined by the six aij appearing in the
equation above. We also have

(
a33 a34

)
= α

(
a13 a14

)
+ β

(
a23 a24

)
,

so a3,3 and a3,4 are determined by the other 10 entries of A, which are free
variables.

• What does X look like? For example, how many components does it have?

• Is X smooth or singular?

• Does X have a simpler embedding somewhere other than C12?

• How would X intersect with another set, say a 2-dimensional plane in C12?

1.1 Affine varieties

In this subsection, k is an arbitrary field.

Definition 1.2. For an arbitrary field k, affine n-space over k, written An
k , is the set

of n-tuples of elements of k:

An
k = {(a1, . . . , an) | ai ∈ k}.

So, An
k is just kn, but we avoid using the latter since kn is the usual notation of

the standard n-dimensional k-vector space. Affine space is not thought of as a vector
space typically.

Recall k[x1, . . . , xn] is the ring of all polynomials in the n variables x1, . . . , xn having
k coefficients. For any subset S of k[x1, . . . , xn], the zero locus of S, written V (S), is
the subset of An

k giving the common zeroes of all the members of S; that is,

V (S) := {(a1, . . . , an) ∈ An
k | f(a1, . . . , an) = 0, for all f ∈ S} ⊆ An

k .
1

When we need to indicate the ground field, we write Vk(S) for V (S). Also, given a
finite list f1, . . . , fm ∈ k[x1, . . . , xn], by V (f1, . . . , fm) we mean V ({f1, . . . , fm}).

Definition 1.3. An affine variety is a subset of An
k , for some n, that is equal to V (S)

for some subset S of k[x1, . . . , xn]. Many people call these sets algebraic sets and reserve
the terminology affine varieties for the irreducible algebraic sets (to be defined).

Here are some pictures of affine varieties.
• For k = R and n = 2, V (y2 − x2(x + 1)) is a nodal curve in A2

R, the real plane.
Note that we’ve written x for x1 and y for x2 here.

1There is a good pedagogical reason why this set was denoted Z(S) in Math 905. However, the
notation here is more standard and the danger of potential confusion does not exist in this course.
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• For k = R and n = 3, V (z − x2 − y2) is a paraboloid in A3
R, real three space.

Note that x = x1, y = x2 and z = x3.

• For k = R and n = 3, V (z − x2 − y2, 3x− 2y + 7z − 7) is an elipse in A3
R.

• The field matters: VR(x2 + y2 + 1) = ∅, while VC(x2 + y2 + 1) 6= ∅.
Here are some important classes of affine varieties.

Example 1.4. • An
k = V ((0) is an affine variety;

• ∅ = V ((1)) is an affine variety;
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• Any singleton {(a1, . . . , an)} is an affine variety, since it is the zero locus of the
set {x1 − a1, . . . , xn − an} and so is any finite set of points in An;

• Linear subspaces of kn are affine varieties;

• Given 0 6= f ∈ k[x1, . . . , xn], the affine variety V (f) is called a hypersurface;

• Given a linear polynomial ` = c1x1 + · · · cnxn + c0 with ci ∈ k, the affine variety
V (`) is called a hyperplane;

• If X ⊆ An and Y ⊆ Am are affine varieties, so is their Cartesian product X×Y =
{(x, y) | x ∈ X, y ∈ Y } ⊆ Am × An = Am+n.

Exercise 1.5. Let V = {(t2, t3) | t ∈ k} ⊆ A2
k. Prove V is an affine variety.

Exercise 1.6. Let V = {(t, t2, t3) | t ∈ k} ⊆ A3
k. Prove V is an affine variety. This is

called the (affine) twisted cubic curve.

Exercise 1.7. Identifying n×n matrices with points in An2

k , prove that the set SLn(k)
is an affine variety and that GLn(k) is an affine variety if and only if k is finite.

Exercise 1.8. Let V = Zn ⊆ An
k , where k is a field of characteristic zero and thus

Z ⊆ k. Prove V is not an affine variety.

Exercise 1.9. Let V = {(t, sin(t)) | t ∈ R} ⊆ A2
R. Prove V is not an affine variety.

Exercise 1.10. Prove that any finite set of points of An
k for any n ≥ 1 is an affine

variety.

Exercise 1.11. Is every countably infinite set of points in An
C an affine variety?

Exercise 1.12. Show S = A2
k \ {(0, 0)} = {(a, b) ∈ A2

k | (a, b) 6= (0, 0)} is not an affine
variety whenever k is an infinite field. Is this true when k is a finite field?

Friday, January 24
Here are some easy-to-prove properties of affine varieties.

Proposition 1.13. For any fixed n:

1. If S1 ⊆ S2 ⊆ k[x1, . . . , xn] then V (S2) ⊆ V (S1).

2. If S1, S2 ⊆ k[x1, . . . , xn] then V (S1) ∪ V (S2) = V (S1 · S2) where S1 · S2 is the set
of products of elements of the form ab with a ∈ S1 and b ∈ S2. In particular, a
finite union affine varieties in An

k is again an affine variety and by induction the
union of a finite number of affine varieties in An

k is again an affine variety.
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3. If {Sα}α∈A is any collection of subsets of k[x1, . . . , xn], then

⋂

α∈A

V (Sα) = V (
⋃

α∈A

Sα).

In particular, an arbitrary intersection of affine varieties in An is again an affine
variety.

Proof. I’ll just prove the second one: If P ∈ V (S1) ∪ V (S2) then for all f ∈ S1,
g ∈ S2 we have (fg)(P ) = f(P )g(P ) = 0 since either f(P ) = 0 or g(P ) = 0. Thus
P ∈ V ({fg} | f ∈ S1, g ∈ S2}) = V (S1S2).

Say P /∈ V (S1) ∪ V (S2). Then for any f ∈ S1, g ∈ S2, we have f(P ) 6= 0 and
g(P ) 6= 0 and thus (fg)(P ) = f(P )g(P ) 6= 0. This proves P /∈ V ({fg} | f ∈ S1, g ∈
S2}) = V (S1S2).

We conclude that V (S1) ∪ V (S2) = V (S1 · S2).

For a subset S of k[x1, . . . , xn], let (S) denote the ideal of this ring generated by S;
that is,

(S) = {f1g1 + · · ·+ fmgm | m ≥ 0, fi ∈ k[x1, . . . , xn], gi ∈ S, for all i}.

For any ideal I, we let
√
I = {f ∈ k[x1, . . . , xn] | fm ∈ I, for some m ≥ 1}, the radical

of I. The radical of an ideal is again an ideal.

Proposition 1.14. For any subset S of k[x1, . . . , xn], if we set J = (S), we have

V (S) = V (J) = V (
√
J).

In particular, V (J) = V (
√
J) for any ideal J .

Proof. The containments ⊇ hold since S ⊆ (S) ⊆
√

(S). Say a ∈ V (S). An arbitrary
element of (S) has the form f = f1g1 + · · · + fmgm with fi ∈ k[x1, . . . , xn] and gi ∈ S
for all i. We have f(a) =

∑
i fi(a)gi(a) =

∑
i fi(a) ·0 = 0. This proves V (S) = V ((S)).

Given any ideal I, if a ∈ V (J) and f is such that fn ∈ J , then f(a)n = (fn)(a) = 0
and hence f(a) = 0. This proves V (J) = V (

√
J).

Thanks to this proposition, we can redefine an affine variety to be a subset of the
form V (J) where J is an ideal (or even a radical ideal).

Exercise 1.15. Prove that if I, J are ideals of k[x1, . . . , xn] then
1. V (I + J) = V (I) ∩ V (J);
2. V (IJ) = V (I) ∪ V (J).

Recall from Math 905:

Theorem 1.16 (Hilbert Basis Theorem). The ring k[x1, . . . , xn] is noetherian. That
is, every ideal of it is finitely generated or, equivalently, the collection of all ideals of
this ring has the ascending chain condition.
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We won’t prove this Theorem in this class; I assume you’ve seen it before.

Corollary 1.17. For any field k, every affine variety V in An
k is the zero locus of a

finite list of polynomials.

Proof. By Proposition 1.14 we may assume V = V (I) for a (radical) ideal I. By
Theorem 1.16 we have I = (g1, . . . , gm) for some gi’s and hence (using Proposition 1.14
again) V = V (g1, . . . , gm).

1.2 Regular maps

Having introduced affine varieties, we are now concerned with what are the right kind
of morphisms between them.

1.2.1 Coordinate rings

The first case to think about are the scalar-valued maps, that is, functions from an
affine variety X ⊆ An

k to A1
k = k. The natural algebraic maps from An

k to A1
k = k are the

polynomials f(x1, . . . , xn), that is, the elements of the ring k[x1, . . . , xn]. We would like
the inclusion ι : X ↪→ An

k to be a morphism and we would also like that the composition
of two morphisms be a morphism. From all this it follows that the restriction of a
polynomial function on An

k to X ⊆ An
k should be a morphism f : X → A1

k. We declare
that these are all the scalar-valued morphisms.

Definition 1.18. Let X ⊆ An
k be an affine variety. A function F : X → A1

k is regular
if there exists f ∈ k[x1, . . . , xn] such that F = f |X , that is, f(a) = F (a) for all a ∈ X.

The ring of regular functions (or the coordinate ring) of X is the set k[X] of all
regular functions2 on X with pointwise addition and multiplication:

k[X] = {f |X | f ∈ k[x1, . . . , xn]}

(f + g)(a) = f(a) + g(a), (fg)(a) = f(a)g(a) for all P ∈ X.
The set k[X] with the operations defined above is a commutative ring.

There is a restriction map π : k[x1, . . . , xn]→ k[X] given by π(f) = f |X . This is a
ring homomorphism. We will be particularly interested in its kernel.

Definition 1.19. For any subset W of An
k , let I(W ) denote the set of all polynomials

that vanish at every point of W :

I(W ) = {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ W}.
2k[X] is not to be confused with k[x1, . . . , xn]. The former is a quotient ring of the latter.
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Proposition 1.20. Let X ⊆ An
k be an affine variety. Its ring of regular function is

given (up to isomorphism) by the formula 3

k[X] ∼= k[x1, . . . , xn]

I(X)
.

Proof. Consider the restriction homomorphism π : k[x1, . . . , xn] → k[X] given by
π(f) = f |X . Then I(X) = Ker(π) (in particular this set is an ideal) and the result
follows by the First Isomorphism Theorem.

Example 1.21. We have k[An] = k[x1, . . . , xn] and k[one point] = k since for a =
(a1, . . . , an), we have that I({a}) = (x1 − a1, . . . , xn − an) is a maximal ideal in
k[x1, . . . , xn]. The surjection π : k[An]→ k[{a}], f 7→ f(a) is evaluation at a.

Example 1.22. Let C = V (f) ⊆ A2
k, where f = y2 − x3. This is called the cuspidal

cubic curve.Then IC = (f) (this is not obvious - check!) and

k[C] ∼= k[x, y]

(y2 − x3)
.

Note that a regular function on C can be exhibited in a way that doesn’t make it
obvious that it is regular, for example,

g(x, y) =

{
y2

x
x 6= 0

0 x = 0

is regular because on C y2 = x3 and so g(x, y) = x2|C .

Monday, January 27
Let’s look at some properties that the set I(W ) from Definition 1.19 has.

Proposition 1.23. 1. For any subset W of An
k , I(W ) is a radical ideal in k[x1, . . . , xn].

2. If W and W ′ are two subsets of An
k , then:

(a) If W ⊆ W ′ then I(W ) ⊇ I(W ′).

(b) I(W ∪W ′) = I(W ) ∩ I(W ′).

Proof. (1) If g ∈ I(W ) and f ∈ k[x1, . . . , xn] then for all P ∈ I(W ) we have (fg)(P ) =
f(P )g(P ) = f(P )0 = 0 and hence fg ∈ I(W ). Similarly one shows I(W ) is closed
under addition. Since clearly 0 ∈ I(W ), I(W ) is an ideal. If fn ∈ I(W ) for some
n ≥ 1, then for all P ∈ W we have 0 = (fn)(P ) = (f(P ))n and hence f(P ) = 0. So
f ∈ I(W ), and this proves I(W ) is radical.

Part (2) follows directly from the definitions.

3We will often think of the two rings in this formula as being identical, writing = instead of ∼=.
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Exercise 1.24. Prove that I(An) = (0) if and only if k is infinite.

Corollary 1.25. If X is an affine variety, the coordinate ring k[X] is a reduced k-
algebra, that is, zero is the only nilpotent element.

Proof. By Proposition 1.20 we have k[X] = k[x1, . . . , xn]/I(X) and by Proposition 1.23
I(X) is radical. Then f t = 0 in k[X] iff f t ∈ I(X) iff f ∈ I(X) iff f = 0 in k[X].

1.2.2 Regular maps

What should be a morphism X → Y where X ⊆ An
k and Y ⊆ Am

k are varieties? As
before we would like the inclusion Y ↪→ Am

k to be a morphism and also the projection
(say, on the first coordinate) Am

k � A1
k to be a morphism. If we compose these maps

X → Y ↪→ Am
k � A1

k

we get a morphism X → A1
k which we know should be the restriction of a polynomial

function f1 ∈ k[x1, . . . , xn]. So the first coordinate of the map X → Y is given by f1|X
and, by the same argument, for each i the i-th coordinate is given by fi|X for some
fi ∈ k[x1, . . . , xn]. Thus

f(a) = (f1|X(a), . . . , fm|X(a)) for all a ∈ X.

Definition 1.26. If X ⊆ An
k and Y ⊆ Am

k are varieties, a morphism or regular map
X → Y is a tuple of polynomial functions fi ∈ k[x1, . . . , xn] restricted to X

f = (f1|X , . . . , fm|X).

Exercise 1.27. Let Gm = V (xy − 1) ⊆ A2. Show the following are regular maps
• componentwise multiplication Gm ×Gm → Gm, ((a1, a2), (b1, b2)) 7→ (a1b1, a2b2)
• componentwise inverse Gm → Gm, (a1, a2) 7→ (a−1

1 , a−1
2 ).

Show that with these operations Gm is isomorphic as a group with (k, ·).

Exercise 1.28. • Prove that regular maps X → A1
K are the regular functions.

• Prove that the inclusion X ↪→ An
k is a regular map.

• Prove that compositions of regular maps are regular maps.
• Prove that a regular map f : X → Am

k has image in Y ⊆ Am
k , so is really a map

f : X → Y if and only if g ◦ f = 0 in k[X] for all g ∈ I(Y ).

Definition 1.29. Two affine varieties X and Y are isomorphic if there are regular
maps g : X → Y and h : Y → X such that g ◦ h = idY and h ◦ g = idX , in which case
each of g an h is referred to as an isomorphism of affine varieties.

Example 1.30. Let Z = V (y − x2) be the parabola (graph of f(x) = x2). Then Z
is isomorphic to A1

k via the mutually inverse morphisms g : Z → A1
K , g(x, y) = x and

h : A1
k → Z, h(x) = (x, x2).

9



Example 1.31. Let X = V (xy − 1) ⊆ A2
k (i.e., X is a hyperbola) and define g : X →

A1
K by g(a, b) = a. Then g is a regular map (indeed, it’s given by a linear polynomial)

and its image is A1
K \ {0}, which is not an affine variety of A1

k. So, the set-theoretic
image of a regular map need not be a variety.

Example 1.32. Let X be the nodal cubic in A2
k given by

X = V (y2 − x2(x+ 1)).

Define a map
g : A1

K → X g(t) = (t2 − 1, t3 − t).

10



g is a regular map since it is represented by polynomials functions and for any t ∈ A1
K ,

we have g(t) ∈ X since

(t3 − t)2 − (t2 − 1)2(t2 − 1 + 1) = t6 − 2t4 + t2 − (t4 − 2t2 + 1)t2 = 0.

The function g is surjective and the preimage of every point on X is single point
with one exception: the fiber of (0, 0) ∈ Z consists of two points, 1 and −1, provided
char(K) 6= 2. Since g is not a set-theoretic bijection it cannot be an isomorphism.

Remark 1.33. An isomorphism of algebraic sets must be a bijection, but the converse
is not true according to the example below.

Example 1.34. Let C be the cuspidal cubic curve:

Y = V (y2 − x3) ⊆ A2
K .

Define
g : A1

K → Y g(t) = (t2, t3).

g is a regular map from A1
K to C since the component functions are polynomial functions

of t and (t3)2 − (t2)3 = 0 for all t. Note that g is a bijection, but, it is not an
isomorphism of affine varieties! We will justify this later.

1.2.3 Pullbacks

In this section we see how regular maps interact with regular functions, i.e., how they
induce maps on coordinate rings.

Definition 1.35. Suppose f : X → Y is a regular map and u : Y → A1
k a regular

function. Define the pullback of u by f as

f ∗(u) : X → A1
k, f ∗(u) = u ◦ f.

Concretely, if f = (f1|X , . . . , fm|X), then f ∗(u(y1, . . . , ym)) = u(f1, . . . , fm).

The pullback construction induces a ring homomorphism

11



Proposition 1.36. Suppose f : X → Y is a regular map and u : Y → A1
k a regular

function. Then the pullback by f induces a k-algebra homomorphism

f ∗ : k[Y ]→ k[X], f ∗(u) = u ◦ f.

Proof. First we show f ∗ is well-defined. Indeed, f ∗(u) = u ◦ f is a regular function on
Y as compositions of polynomials are polynomials.

Recall that a k-algebra homomorphism is a ring homomorphism that is also k-linear.
The properties that make this map such a homomorphism are easily checked:

f ∗(idk[Y ]) = idk[Y ] ◦ f = idk[X]

f ∗(u+ v) = (u+ v) ◦ f = u ◦ f + v ◦ f = f ∗(u) + f ∗(v)

f ∗(uv) = (uv) ◦ f = (u ◦ f)(v ◦ f) = f ∗(u)f ∗(v)

f ∗(cu) = (cu) ◦ f = c · u ◦ f = cf ∗(u) for c ∈ k.

Exercise 1.37 (Properties of pullbacks). Prove that if X, Y, Z are affine varieties and
f : Y → Z, g : X → Y are regular maps then

• (idX)∗ = idk[X]

• (f ◦ g)∗ = g∗ ◦ f ∗.
Exercise 1.38. Prove that if X, Y are affine varieties and h : k[Y ] → k[X] is a k-
algebra map then there exists a unique regular map f : X → Y such that h = f ∗.

Exercise 1.39. Consider the regular maps f, g : A1
k → A2

k, f(t) = (t, t2), g(t) = (t2, t3).
Let X and Y denote their respective images and view f : A1

k → X, g : A1
k → Y .

What are the pullbacks of these maps? Are f, g injective/surjective/bijective? Are the
pulback maps injective/surjective/bijective?

Wednesday, January 29

1.3 The algebra-geometry correspondence

1.3.1 Nullstellensatz

Henceforth, we assume k is algebraically closed unless otherwise specified.
There are several versions of the Nullstellensatz. Proofs can be found in Math 905.

Theorem 1.40 (Algebraic Nullstellensatz). Let k and E be fields. If E is a finitely
generated k-algebra then E is a finite algebraic extension of k. In particular, if k is
algebraically closed, then E = k.

Theorem 1.41 (Weak Nullstellensatz - I). If I is an ideal in k[x1, . . . , xn] and V (I) = ∅
then I = (1) = k[x1, . . . , xn].

12



Theorem 1.42 (Weak Nullstellensatz - II). If m is a maximal ideal in k[x1, . . . , xn]
then there exists a unique a = (a1, . . . , an) ∈ An

k so that m = (x1 − a1, . . . , xn − an).

Theorem 1.43 (Strong Nullstellensatz). 4 Assume k is algebraically closed. ThenV (−)
and I(−) are order-reversing mutually inverse bijections between the partially ordered
sets (under containment)

Affine Varieties in An
k

V←→
I

Radical Ideals in k[x1, . . . , xn].

Specifically,
I(V (J)) = J and V (I(X)) = X

for any radical ideal J of k[x1, . . . , xn] and any affine variety X in An
k .

Exercise 1.44. Prove the second part of the Strong Nullstellensatz, assuming the first
part is true. That is, assume that I(V (J)) = J for any radical ideal J of k[x1, . . . , xn]
and prove that V (I(X)) = X for any affine variety X in An

k .

There are slightly following more general statements of the Strong Nullstellensatz:

Corollary 1.45. If k is algebraically closed, then for any set S of polynomials we have
I(V (S)) =

√
(S). In particular, for any ideal J we have

I(V (J)) =
√
J.

Moreover, if W is any subset of An
k , V (I(W )) is the unique smallest affine variety in

An
k that contains W , which we will denote by W and call the Zariski closure of W .

Using this notation, we have
V (I(W )) = W.

Exercise 1.46. Prove Corollary 1.45.

The hypothesis that k is algebraically closed is crucial.

Example 1.47. For J = (x2 + y2) and k = R, we have that J is a radical ideal and
yet I(V (J)) = (x, y) ) J .

More concretely, the two systems of equations

x2 + y2 = 0 and

{
x = 0

y = 0

have the same set of solutions (over R), and yet x = 0 is not an algebraic consequence
of x2 + y2 = 0 (no power of x is a R[x, y]-multiple of x2 + y2).

4This theorem is phrased a little differently from what was called the Strong Nullstellensatz in
Math 905. The first assertion is (a particular case of) what was called the Strong Nullstellensatz in
Math 905. However this is the “hard” part of the theorem. See Exercise 1.44. What was called the
Strong Nullstellensatz in Math 905 is a consequence of the first assertion of Theorem 1.43; see Exercise
1.45.

13



Let’s give some applications of the Strong Nulistellenstaz:

Corollary 1.48. Suppose k is algebraically closed.

1. If X and X ′ are two affine varieties in An
k , then I(X ∩X ′) =

√
I(X) + I(X ′).

2. If J and J ′ are two radical ideals in k[x1, . . . , xn] then V (J ∩J ′) = V (J)∪V (J ′).

3. If X and Y are disjoint affine varieties then k[X ∪ Y ] ∼= k[X]⊕ k[Y ].

Proof. 1. Since both sides are radical ideals, and V (−) is a bijection, by the Nullstel-
lensatz it suffices to prove

V (I(X ∩X ′)) = V (
√
I(X) + I(X ′)).

This holds since V (I(X ∩X ′)) = X ∩X ′ by Nullstellensatz and using Exercise 1.15

V (
√
I(X) + I(X ′)) = V (I(X) + I(X ′)) = V (I(X)) ∩ V (I(X ′)) = X ∩X ′.

2. We apply I(−) to both sides: I(V (J ∩ J ′)) = J ∩ J ′ by the Nullstellensatz while

I(V (J) ∪ V (J ′)) = I(V (J)) ∩ I(V (J ′)) = J ∩ J ′.

Because I(−) is a bijection, we conclude the desired equality.
3. This is a homework problem.

Example 1.49. Show that Corollary 1.48 3. is false without the disjoint hypothesis.

Example 1.50. The Corollary is false over R: Take W = V (y − x2) and W ′ =
V (y + 1) in A2

R. Then I(W ) = (y − x2) and I(W ′) = (y + 1) (why?) and hence√
I(W ) + I(W ′) ( k[x, y] (since k[x, y]/(y − x2, y + 1) ∼= k[x]/(x2 + 1) 6= 0). But

W ∩W ′ = ∅ and so I(W ∩W ′) = k[x, y].

1.3.2 An equivalence of categories

In mathematics, a category is a collection of ”objects” that are linked by ”arrows”
(morphisms). A category has two basic properties: the ability to compose the arrows
associatively and the existence of an identity arrow for each object. A simple example
is the category of sets, whose objects are sets and whose arrows are functions. Other
examples include: the category of groups, whose objects are groups and whose arrows
are group homomorphisms, the category of rings, whose objects are rings and whose
arrows are ring homomorphisms, and many others.

We won’t prove the following but it is true.

Theorem 1.51. The collections of affine varieties over a fixed field k and the regular
between them form a category 〈〈Affine Varieties〉〉k.

14



A contravariant functor F is a map between two categories F : C → D such that
1. it associates to each object X ∈ C an object F (X) ∈ D
2. it associates to each morphism f : X → Y in C a morphism F (X) : F (Y ) →
F (X) in D

3. F (idX) = idF (X) for every X in C
4. F (g ◦ f) = F (f) ◦ F (g) for all morphisms f, g in C so that g ◦ f makes sense..

An equivalence of categories is a relation between two categories that establishes
that these categories are “essentially the same”. A functor F : C → D yields an
equivalence of categories if and only if it is simultaneously:

1. full: every morphism between objects of D is the image by F of some morphism
between objects of C;

2. faithful: the map induced by F on morphisms is injective;
3. essentially surjective, each object in D is isomorphic to an object of the form
F (c), for some c ∈ C.

Theorem 1.52. There is a contravariant functor

k[−] : 〈〈Affine Varieties〉〉k → 〈〈Reduced, finitely generated k-algebras〉〉

which takes an affine variety X to its ring of regular functions k[X] and takes a regular
map X → Y to its pullback f ∗ : k[Y ]→ k[X].
This functor induces an equivalence of categories between the two categories listed above.

Proof. To see that k[−] is a functor one has to check that
• (idX)∗ = idk[X]

• (g ◦ f)∗ = f ∗ ◦ g∗.
These follow from Definition 1.35. For example, associativity of composition gives

(g ◦ f)∗(u) = u ◦ (g ◦ f) = (u ◦ g) ◦ f = f ∗(u ◦ g) = f ∗(g∗(u)) = (f ∗ ◦ g∗)(u).

To see that the functor is full we need to check: if h : k[Y ] → k[X] is a k-algebra
map then there exists a regular map f : X → Y such that h = f ∗.

Given a k-algebra map h : k[Y ]→ k[X], that is

h :
k[y1, . . . ym]

I(Y )
→ k[x1, . . . xn]

I(X)
,

let hi be any lift of h(yi) ∈ k[X] to k[x1, . . . xn] and define a regular map

f : X → Am
k , f(a) = (h1|X(a), . . . , hm|X(a)).

We will show that the image of this map lands in Y . By a homework problem it suffices
to show that for all g ∈ I(Y ) we have g ◦ f = 0 in k[X]. This amounts to computing

g ◦ f = g(h1, h2, . . . , hn) = g(h(y1), . . . , h(yn)) = h(g(x))

15



since h is a ring homomorphism. But since g ∈ I(Y ), g = 0 in k[Y ] and thus h(g) = 0
in k[X] as desired.

To see that the functor is faithful we need to check that the f we found above is
uniquely determined by h. Let f = (f1, . . . , fm) with fi ∈ k[X]. Since h = f ∗ we have

fi = f ∗(yi) = h(yi).

This shows that f is unique.
To see that the functor is essentially surjective we need to check that every reduced,

finitely generated k-algebra is isomorphic to k[X] for some affine variety X. A finitely
generated k-algebra can be described as k[x1, . . . , xn]/I for some ideal I. It is reduced
if and only if I is a radical ideal. Set X = V (I). Then by the Nullstellensatz I(X) = I
and by Proposition 1.20 we have k[X] ∼= k[x1, . . . , xn]/I(X) = k[x1, . . . , xn]/I, as
desired.

In the proof above we have used the following important fact:

Lemma 1.53 (A formula for computing pullback). If f : X → Y is a regular map
given by f(a) = (f1(a), . . . , fm(a)) then for any u(y1, . . . , ym) ∈ k[Y ] we have

f ∗(u) = u(f1, . . . , fm) = u(f ∗(y1), . . . , f ∗(ym)).

Equivalences of categories take isomorphisms to isomorphisms. Thus we now see
that the coordinate ring functor detects isomorphisms of affine varieties.

Proposition 1.54. A regular map f : X → Y is an isomorphism of affine varieties if
and only if f ∗ : k[Y ]→ k[X] is a ring isomorphism.

Exercise 1.55. Prove the Proposition above using the properties listed in Exercise
1.37 and in Exercise 1.38 (which was solved in the proof of Theorem 1.52).

Since we know that every k-algebra homomorphism h : k[Y ] → k[X] is given by
h = f ∗ for some regular map f : X → Y (see the proof of Theorem 1.52) we obtain.

Theorem 1.56. Two affine varieties are isomorphic if and only if their coordinate
rings are isomorphic.

Exercise 1.57. Prove that the parabola X = V (y − x2) is isomorphic to A1
k.

Exercise 1.58. Prove that the cuspidal cubic Y = V (y2−x3) is not isomorphic to A1
k.

Friday, January 31

16



1.4 Zariski topology

1.4.1 The Zariski topology

Recall that a topology on a set X is a specified collection of subsets of X, known as the
open subsets, such that

1. X is an open subset of X,
2. ∅ is an open subset of X,
3. the intersection of any two open subsets it open, and
4. an arbitrary union of open subsets is open.

Such a specified collection of open subsets makes X into a topological space.
In any topological space, a closed subset is any subset that is the complement of an

open one. One may equivalently describe a topology as a collection of specified closed
subsets such that

1. X is a closed subset of X,
2. ∅ is a closed subset of X,
3. the intersection of an arbitrary collection of closed subsets is closed, and
4. the union of two closed subsets is closed.

By what we have proved in Proposition 1.14 about affine varieties, we may define:

Definition 1.59. The Zariski topology on An
k is the topology in which a subset X of

An
k is closed if and only if it is an affine variety (i.e., X = V (I) for some ideal I of the

polynomial ring) and a subset U of An
k is open iff U = An

k \ V (I) for some ideal I.

Example 1.60. In A1
k the only proper closed subsets of are the finite sets (including

the empty set).

Example 1.61. In A2
k the proper closed subsets are finite unions of curves (hypersur-

faces) and points in A2
k.

Exercise 1.62. Show that the Zariski topology on Am+n = Am × An is not the same
as the product topology of the Zariski topologies of the two factors.

We can also talk about the Zariski topology on an affine variety.

Definition 1.63. Given a variety X in An
k , the Zariski topology on X is the subspace

topology, that is, a subset of X is open in the subspace topology if and only if it is the
intersection of X with an open set of An and, equivalently, a subset of X is closed in
the subspace topology if and only if it is the intersection of X with a closed set of An.

Remark 1.64. • A subset U of an affine variety X is open iff it has the form U =
X \ V (I) for some ideal I in k[x1, . . . , xn].

• A subset C of an affine variety X is closed iff C is an affine subvariety of X (i.e.,
an affine variety in An

k that is contained in X).
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1.4.2 Irreducible varieties and irreducible decomposition

Definition 1.65. An affine variety is irreducible if it cannot be written non-trivially
as a union of affine variaties — that is, X is irreducible provided whenever X = Y ∪Z
with Y and Z affine varieties, we have Y = X or Z = X.

Definition 1.66. An affine variety is connected if it cannot be written non-trivially
as a disjoint union of affine varieties — that is, X is connected provided whenever
X = Y ∪ Z with Y and Z affine varieties such that Y ∩ Z = ∅, we have Y = X or
Z = X.

Irreducible implies connected but not the other way around.

Example 1.67. 1. V (xy) = V (x) ∪ V (y) is connected but reducible (the union of
the x and y axes);

2. V (xy, x2 − x) = V (x) ∪ V (x − 1, y) is disconnected and reducible (the union of
the y axis and the point (1, 0));

3. V (x− y2) is connected and irreducible; see Exercise 1.68.
4. V (xy, xz) = V (x)∪ V (y, z) in A3

k is connected and reducible as it is the union of
a line and a plane, specifically the x-axis and the yz-plane.

Exercise 1.68. Prove that a hypersurface X = V (f(x1, . . . , xn)) in An
k is irreducible

if and only if f is an irreducible polynomial or a power of an irreducible polynomial.
Hint: First reduce to the case that f ∈ k[x1, . . . , xn] is a polynomial without repeated
factors and then prove X = V (f) is irreducible if and only if f is irreducible.

Exercise 1.69. Show that the following are equivalent for an affine variety X
1. X is irreducible
2. every non-empty open subset U of X is dense in X i.e. U = X
3. the intersection of any two non-empty open subset of X is non-empty.

Proposition 1.70 (Irreducibility criterion). The following are equivalent for an affine
variety X

1. X is irreducible
2. I(X) is a prime ideal
3. k[X] is an integral domain.

More generally, the collection of irreducible affine subvarieties of a given affine variety
is in bijective correspondence with the collection of primes ideals in its coordinate ring.

Proof. The fact that 2. and 3. are equivalent follows from Math 818 using Proposition
1.20. Thus we will only prove that 1. and 2. are equivalent below.

If X is not irreducible, then X = Y ∪ Z for proper closed subsets Y and Z of
X. It follows that I(X) ( I(Y ), I(X) ( I(Z), and I(X) = I(Y ) ∩ I(Z). So pick
f ∈ I(Y ) \ I(X) and g ∈ I(Z) \ I(X). Then fg ∈ I(X), proving I(X) is not prime.

Suppose I(X) is not prime. Then there are polynomials f and g neither of which is
in I(X) and yet fg ∈ I(X). Set J = I(X)+(f) and L = I(X)+(g) and Y = V (J) and
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Z = V (L). Then Y ( X, Z ( X and Y ∪Z = V (J)∪V (L) = V (J ·L) = V (I(X)) = X
since I · L = I(X).

For the second assertion, we already know there is a bijective correspondence be-
tween affine subvarieties of an affine variety V and radical ideals of A(V ), given by
W 7→ I(W )/I(V ). The assertion holds since I(W )/I(V ) is prime in A(V ) if and only
if I(W ) is prime in k[x1, . . . , xn].

If a variety is reducible, we can decompose it as a finite union of irreducible varieties.
To prove this we need a preliminary lemma.

Definition 1.71. A topological space is noetherian if it satisfies the descending chain
condition on closed sets: any descending chain X1 ) X2 ) X3 ) . . . of closed subsets
must eventually stabilize.

Lemma 1.72. If k is algebraically closed, then An
k with its Zariski topology is noethe-

rian. More generally, any affine variety X of An
k with its Zariski topology is noetherian.

Proof. A descending chain X1 ) X2 ) X3 ) . . . of closed subsets of X corresponds to
an ascending chain I(X1) ( I(X2) ( I(X3) ( . . . of ideals of k[x1, . . . , xn], where we
have used the Nullstellensatz (specifically fact that the function I(−) is a bijection)
to conclude the non-equalities in the chain of ideals. Since the polynomial ring is
noetherian, the chain of ideals must stabilize so the chain of varieties stabilizes too
(again using the Nullstellensatz).

Theorem 1.73. Every affine variety X is a finite union of irreducible closed subsets,
X = X1 ∪ · · · ∪Xm, such that Xi 6⊆ Xj for all i 6= j. Moreover, the list of such subsets
is unique up to ordering, and are known as the irreducible components of X.

Proof. In general, if X is any noetherian topological space, then the conclusion of the
theorem holds. The existence is given as follows: If X is irreducible, then we may take
m = 1 and X1 = X. If not, then X = X1 ∪Y1 for two proper closed subsets X1 and Y1

of X. If both X1 and Y1 are irreducible, we are done; otherwise we can decompose at
least one of them — without loss say it is Y1 that decomposes. Then Y1 = X2∪Y2 with
X2 and Y2 closed a proper in Y1. Continuing in the fashion gives a strictly descending
chain X ) Y1 ) Y2 ) of closed subsets. By noetherianity, this process must stop after
a finite number of steps, and thus X = X1∪· · ·∪Xm for some irreducible closed subsets
X1, . . . , Xm. If Xi ⊆ Xj for some i 6= j, delete Xi from the list.

Now for the uniqueness: suppose

X = X1 ∪ · · · ∪Xm = Y1 ∪ · · · ∪ Yn

such that Xi, Yj are irreducible varieties, Xi 6⊆ Xj and Yi 6⊆ Yj for any i, j. Then

Xi = (Xi ∩ Y1) ∪ · · · ∪ (Xi ∩ Yn)

Yj = (X1 ∩ Yj) ∪ · · · ∪ (Xm ∩ Yj),
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but since Xi, Yj are irreducible and Xi∩Yj are affine varieties, it must be that Xi∩Yj =
Xi = Yj whenever Xi ∩ Yj 6= ∅. The desired conclusion regarding uniqueness follows.

How do we find the irreducible components? The answer is given by primary
decomposition. Recall from Math 905:

Theorem 1.74. Any ideal in a noetherian ring decomposes as an intersection of pri-
mary ideals. In particular any radical ideal J in a noetherian ring decomposes as

J = P1 ∩ P2 ∩ · · · ∩ Pn

where P1, . . . , Pn are prime ideals such that Pi 6⊆ Pj for all i 6= j and this decomposition
is unique up to re-ordering the prime ideals. (The primes P1, . . . , Pn above are called
the associated primes of J .)

As a corollary we have the following correspondence between associated primes and
irreducible components:

Remark 1.75. If J is a radical ideal and if J = P1 ∩ P2 ∩ · · · ∩ Pn with Pi prime ideals
as above then by Proposition 1.70 V (Pi) is an irreducible affine variety for each i and
by Corollary 1.48 (2.) we have

X = V (J) = V (P1 ∩ P2 ∩ · · · ∩ Pn) = V (P1) ∪ V (P2) ∪ · · · ∪ V (Pn)

is the irreducible decomposition of X.

Monday, February 3

1.4.3 Distinguished open sets and compactness

One particular kind of Zariski open subset is particularly important:

Definition 1.76. A distinguished open subset of an affine variety X is a set of the form

DX(f) = {P ∈ X | f(P ) 6= 0}

for some element f ∈ k[X]. We can also think of DX(f) = X ∩ DAn
k
(f) for f ∈

k[x1, . . . , xn].)

Exercise 1.77. Let X be any affine variety. Show DX(f) ∩ DX(g) = DX(fg); in
particular, the intersection of finitely many distinguished open subsets of X is again
distinguished.

Recall that a collection of subsets B of a set T is a basis for a topology on T if:
1. for every point P there is a U ∈ B with P ∈ U and
2. if P ∈ U1 ∩ U2 for some U1, U2 ∈ B, there is U3 ∈ B such that P ∈ U3 ⊆ U1 ∩ U2.
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The topology generated by such a basis is the collection of subsets of T that are
arbitrary unions of members of B.

Exercise 1.78. Let X be any affine variety. Show that the distinguished open sets of
X form a basis for the Zarsiki topology. So, you are being asked to show the above
two properties hold for the collection of distinguished open sets and that every Zariski
open set is a union of distinguished ones.

An important property of the Zariski topology is that it is compact. This will allow
us to reduce proofs involving possibly infinitley many sets whose union covers X to
finitely many.

Definition 1.79. A topological space X is (quasi-)compact if every open cover of X
by open subsets admits a finite subcover.

Proposition 1.80 (Quasi-compactness of the Zariski topology). Every affine variety
X is (quasi-)compact for the Zariski topology. In fact, every open subset of X is (quasi-
)compact.

Proof. (Quasi-)compactness is equivalent to a statement on closed sets: if {Cα} is a
collection of closed subsets of X such that

⋂
αCα = ∅ then Cα1 ∩ · · · ∩ Cαm = ∅ for

some finite list α1, . . . , αm of indices.
We may translate the first assertion into a statement about ideals in the ring R =

k[X]. We need to prove that if {Iα} is a collection of ideals such that
∑

α Iα = R then
Iα1 + · · · + Iαm = R for some finite sub-collection. This holds since

∑
α Iα = R iff

1 ∈∑α Iα iff 1 ∈ Iα1 + · · ·+ Iαm for some α1, . . . , αm.
I’ll just sketch the proof of the second assertion: Let U be an open subset of an

affine variety X, say U = X \ V (J) for an ideal J . We have J = (g1, . . . , gm) by the
Hilbert Basis Theorem, and so U =

⋃m
i=1X \ V (gi). Since this is a finite union, it

suffices to show each X \ V (gi) is quasi-compact. So, without loss, we may assume
U = X \ V (g) for some g. The points of U are in bijective correspondence with the
maximal ideals of the ring R[1/g] and the closed subsets are given by ideals of this
ring. So, the same proof as in the first part applies.

In the previous proof sketch we have seen that the ring k[X][1/g] acts like a kind
of coordinate ring for DX(g). We will explain this more rigorously in the next section.

We use the terminology quasi-compact to indicate that a space is compact but not
Hausdorff.

Exercise 1.81. Show that the Zariski topology on An
k is not Hausdorff (provided

n > 0). Indeed, show the intersection of any two non-empty open sets is non-empty.

1.5 The sheaf of regular functions

Example 1.82 (Projection from a point). Consider the map that projects from the
origin points in A2

k to the line L with equation y = 1. Spcifically, if (x, y) ∈ A2
k the
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line connecting the origin and this point intersects L at (x
y
, 1). Identifying L ∼= A1

k = k

this gives a map ϕ : A2
k 99K A1

k = k, (x, y) 7→ x
y
. Note that this map is not defined

on all of A2
k. Indeed it is only defined on the open set U = {(x, y) : y 6= 0}. This if

reflected by the fact that we represent φ by a dashed arrow. Moreover this map is not
a regular function, but rather a rational function, that is, given by a quotient of two
polynomials.

This shows that we will need to consider rational functions, i.e. quotients of poly-
nomials and that these functions may only be defined on an open set. A natural class
of functions to consider is that of rational functions of the form g

h
with g, h ∈ k[X],

which are defined on DX(h). If X is irreducible, so k[X] is a domain, these are the
elements of the fraction field

Frac(k[X]) =
{g
h
| g, h ∈ k[X], h 6= 0

}
.

However for additional flexibility we’ll consider all functions that agree with a ra-
tional function in some open neighborhood of each input. A way to think about these
functions that we’ll develop below is that they are obtained by “glueing” together
functions of the form gi

hi
that agree on the overlaps of their domains DX(hi)∩DX(hj).

Definition 1.83. Let X be an affine variety in An
k and U ⊆ X any open subset (for

the Zariski topology).
A k-valued function f : U → k is regular at a point a ∈ U if there exist g, h ∈ k[X]

such that h(a) 6= 0 and f agrees with g
h

in some neighborhood of a. More formally:

there is a Zariski open neighborhood U ′ of a in U , so that a ∈ U ′ ⊆ U and f(P ) = g(P )
h(P )

for all P ∈ U ′.
The function f is regular on U if it is regular at every point of U . The set of all

regular functions on U is denoted OX(U).
The set of all regular functions at a is the set of equivalence classes of regular

functions at a, where for Zariski open sets U1, U2 containing a and regular functions
f1 : U1 → k and f2 : U2 → k we say they are equivalent if there is a Zariski open set
U3 ⊆ U1 ∩ U2 so that f1|U3 = f2|U3 .

The set of all regular functions at a is denoted OX,a.

Note that OX(U),OX,a are commutative rings with pointwise addition and multi-
plication.

Example 1.84. The map ϕ in Example 1.82 is regular at every point a = (a1, a2)
with a2 6= 0 so ϕ ∈ OA2

k
(D(y)).

Example 1.85. Every element of k[X] determines a regular function on every open
subset U of X: Given f ∈ k[X], let α : U → k be defined by α(P ) = f(P ), then in the
definition of regular function we can take U ′ = U for all a.

Thus there is a map (in fact a k-algebra homomorphism)

ι : k[X]→ OX(U), f 7→ f.

22



We will prove below in Theorem 1.89 that the map ι is in fact an isomorphism
when U = X — that is, there are no “interesting” functions that is regular at every
point of an affine variety. In other words, the next theorem shows that the regular
functions on X viewed as an open set of itself are the same as what we used to call
regular functions, that is, the elements of k[X].

First we need a lemma.

Lemma 1.86. For an open subset U of an affine variety X ⊆ An
k , a function α : U → k

is regular if and only if there is a finite cover U = U1 ∪ · · · ∪ Um of U by distinguished
open subsets Ui = DX(hi), for some hi ∈ k[X], and elements f1, . . . , fm ∈ k[X] such

that, for each i, the function α|Ui
: Ui → k is given by

(
P 7→ fi(P )

hi(P )

)
and fi is identically

zero on X \ Ui.

Proof. The direction ⇐ is clear from the definition.
For the other direction, say α : U → k is a regular function. By definition we

can write U =
⋃
i Ui for some (possibly infinite) collection of open subsets {Ui} of U

such that for each i we have α|Ui
= fi

gi
|Ui

for some fi, gi ∈ k[X] with gi nonzero on Ui.
Since the distinguished open subsets form a basis for the Zariski topology, by shrinking
a bit we may assume each Ui is distinguished: Ui = DX(hi) for hi ∈ k[X]. By the
quasi-compactness of U , we can take the collection {Ui} to be finite. It remains to
show that we may assume gi = hi and that VX(fi) ⊇ VX(hi).

Since fi
gi

= fihi
gihi

conincide as functions on Ui, by replacing fi with fihi and gi with

gihi, we may assume fi(Q) = 0 = gi(Q) for all Q /∈ Ui. Since gi(Q) 6= 0 for all Q ∈ Ui,
this gives that UX(gi) = UX(hi). By replacing hi with gi, in the notation, we may as
well assume gi = hi.

Theorem 1.87. Let X be an affine variety in An
k . The canonical map

ι : k[X]→ OX(X), f 7→ f.

is an isomorphism of k-algebras.

Proof. It is clear that the function ι is a homomorphism.
If f is in the kernel of ι, then f ∈ I(X) so that f = 0 in k[X]. Thus ι is injective.
Now let ϕ be a regular function in the sense of Definition 1.83. By Lemma 1.86 there

is a finite cover U = U1 ∪ · · · ∪ Um of X by distinguished open subsets Ui = DX(hi),
for some hi ∈ k[X], and elements f1, . . . , fm ∈ k[X] such that, for each i, the function

α|Ui
: Ui → k is given by

(
P 7→ gi(P )

hi(P )

)
and gi is identically zero on X \ Ui.

Because the sets D(hi) for 1 ≤ i ≤ t cover X and hi does not vanish on D(hi),
we have that h1, . . . , ht cannot vanish simultaneously, that is V (h1, . . . ht) = ∅ and the
relative Nullstellensatz yields (h1, . . . ht) = k[X]. Thus for some `1, . . . , `t ∈ k[X] we
have

1 =
t∑

i=1

`ihi

23



Set f =
∑t

i=1 `igi ∈ k[X]. We’ll check that ϕ = f as functions. In the mean time
observe that on D(hi) ∩D(hj) we have gi

hi
=

gj
hj

as both of these expressions are equal

to ϕ. So higj = hjgi on D(fi)∩D(fj). This equality also holds on D(hj)\D(hi) where
hi = 0 (by definition of D(hi)) and gi = 0 by Lemma 1.86.. Thus higj = hjgi holds on
D(hj).

Therefore on each D(hj) we have identities

ϕ =
gi
hi

= 1 · gj
hj

=
t∑

i=1

`ihi ·
gj
hj

=
t∑

i=1

`ihj ·
gi
hj

=
t∑

i=1

`igi = f.

This completes the proof.

Example 1.88. Suppose U = DX(h) is a distinguished open subset of an affine variety
X for some h ∈ k[X]. Then every element of the ring

k[X] [1/h] =
{ g

hm
| g ∈ k[X]

}

determines a regular function on U .
This gives a ring map

ι : k[X] [1/h]→ OX(DX(h)),
g

hm
7→ g

hm
.

This map is also an isomorphism, so that the only regular functions on a distin-
guished open subset are the “obvious ones”. The proof is similar to the previous
theorem; we omit it.

Theorem 1.89. Let X be an affine variety in An
k and let 0 6= h ∈ k[X]. The canonical

map
k[X] [1/h]→ OX(DX(h))

is an isomorphism of k-algebras.
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We can deduce a localization formula for the ring of regular functions at a. In
particular this is a local ring (has a unique maximal ideal).

Corollary 1.90. The regular functions at a point a ∈ X are the elements of

OX,a := k[X]I(a) =
{g
h
| g, h ∈ k[X], h 6∈ I(a)

}
.

Proof sketch. We have that

k[X]I(a) =
⋃

f∈k[X],f(a) 6=0

k[X][1/f ] =
⋃

a∈D(f)

OX(D(f)) =
⋃

a∈U

OX(U).

The last equality is true since the open sets D(f) are a basis for the topology of X.
Finally the last set comprises the regular functions at a.
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So far we have identified several rings of regular functions with localizations of
the coordinate ring k[X]. But not every OX(U) is such as localization. On non-
distinguished open subsets there are interesting examples of regular functions:

Example 1.91. Let X = V (xw − yz) ⊆ A4
k and U be the open subset of X given by

U = X\V (y, w) = X\(V (y)∪V (w)) = {(x, y, z, w) ∈ A4
k | xz = yw and (y 6= 0 or w 6= 0)}.

Define α : U → A1
k by the following rule: Set U ′ = U \V (y) = {(x, y, z, w) ∈ U | y 6= 0}

and U ′′ = U \ V (w) = {(x, y, z, w) ∈ U | w 6= 0}, and note that U = U ′ ∪ U ′′. Define

α(x, y, z, w) =

{
x
y

if (x, y, z, w) ∈ U ′ and
z
w

if (x, y, z, w) ∈ U ′′;

that is,

α(x, y, z, w) =

{
x
y

if y 6= 0, and
z
w

if w 6= 0.

Then α is a well-defined function, since whenever y 6= 0 and w 6= 0 (i.e., for points in
U ′ ∩U ′′) we have x

y
= z

w
thanks to the defining equation for X. Moreover, α is regular

since U = U ′ ∪ U ′′ and on each of U ′ and U ′′ it is given by a quotient of polynomials.
But α cannot be represented by any polynomial or even any rational function; that

is, there do not exist f, g ∈ k[X] such that α(P ) = f(P )
g(P )

for all P ∈ U . This means

that α is not an element in any localization of k[X].

The previous example brings up a relevant point: we can make interesting regular
functions by glueing regular functions defined on distinguished open sets as long as
they agree on the intersection.

Regular functions have the following properties which make them into a sheaf OX :

1. Every OX(U) is a k-algebra.

2. If U1 ⊆ U2 are open sets the restriction map defines a k-algebra homomorphism
resU2,U1 : OX(U2) → OX(U1). In particular if U1 ⊆ U2 ⊆ U3 are open sets the
restrictions compose nicely resU2,U1 ◦ resU3,U2 = resU3,U1 .

3. If f1 ∈ OX(U1), f2 ∈ OX(U2) satisfy f1|U1∩U2 = f2|U1∩U2 , then there is a unique
f ∈ OX(U1 ∪ U2) so that f |U1 = f1 and f |U2 = f2.

An element f ∈ OX(U) is then called a section of the sheaf OX . The ring OX,a is
called the stalk of OX at a.
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1.6 (Bi)-Rational maps

Next we will consider maps between irreducible varieties given componentwise by ra-
tional functions.

Definition 1.92. Let X ⊆ An
k and Y ⊆ Am

k be irreducible affine varieties. A rational
map X 99K Am

k is a function (the dashed arrow means it’s only defined on an open
subset of X)

ϕ : X 99K Am
k , ϕ(a) = (ϕ1(a), . . . , ϕm(a)) for some ϕi ∈ k(X) = Frac(k[X]).

The function ϕ is regular at a if each ϕi is regular at a, that is, ϕi(a) is defined.
A rational map ϕ : X 99K Y is a rational map ϕ : X 99K Am

k whose image lands in
Y .

We would like to consider pullbacks of rational maps.

Definition 1.93. If ϕ : X 99K Y is a rational map, its pullback is the function

ϕ∗ : k[Y ]→ k(X), ϕ∗(u) = u ◦ ϕ = u(ϕ1, . . . , ϕm). (1.1)

Note that the domain of the pullback above is regular functions. We would like
to extend the pullback to rational functions k(Y ) as inputs. However, there are a
few issues: first, if u is a rational function on X, the image of ϕ may land outside the
domain of definition of u, so u◦ϕ may not make sense. Second, we would like to use the
UMP of the fraction field to induce a map ϕ̃∗ : k(Y ) → k(X), ϕ̃∗(g/h) = ϕ∗(g)/ϕ∗(h)
based on (1.1). However, for this to be defined we need ϕ∗(h) 6= 0 whenever h 6= 0. So
we need ϕ∗ to be injective.

Definition 1.94. A map ϕ : X 99K Y is dominant if Im(ϕ) is dense in Y , that is
Im(ϕ) = Y .

Lemma 1.95. If ϕ : X 99K Y is a rational map, the pullback ϕ∗ : k[Y ] → k(X) is
injective if and only if ϕ is dominant.

Proof. Suppose ϕ∗ : k[Y ] → k(X) is injective and suppose Im(ϕ) ⊆ V (u) for some
u ∈ k[Y ]. Then ϕ∗(u) = 0 so u = 0, so Im(ϕ) = V (0) = Y .

Suppose ϕ is dominant and u ∈ Ker(ϕ∗). Then ϕ∗(u) = 0 so u = 0 on Im(ϕ),
equivalently Im(ϕ) ⊆ V (u). This implies Im(ϕ) = Y = V (0) ⊆ V (u) so u = 0.

This leads to the following result whose proof is similar to the bijection between
regular maps f : X → Y and k-algebra homomorphisms f ∗ : k[Y ]→ k[X] in Theorem
1.52.

Proposition 1.96. There is a bijection

dominant rational maps ↔ inclusions of field extensions of k fixing k
ϕ : X 99K Y ↔ ϕ∗ : k(Y )→ k(X)
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Definition 1.97. A pair of dominant rational maps ϕ : X 99K Y and ψ : Y 99K X so
that ϕ ◦ ψ = idY and ψ ◦ ϕ = idX wherever these compositions are defined are each
called birational. If such maps exist, X and Y are called birational.

Corollary 1.98. A dominant rational map ϕ : X 99K Y is birational if and only if its

pullback is an isomorphism ϕ∗ : k(Y )
∼=−→ k(X).

Example 1.99 (Stereographic projection). Consider the sphere X = V (x2+y2+z2−1)
and Y = V (z) ∼= A2

k. The map that projects from the north pole of the sphere (0, 0, 1)
onto the z = 0 plane is given by

π : A3
k 99K A2

k, π(x, y, z) =

(
x

1− z ,
y

1− z

)

and has inverse

π−1 : A2
k 99K A3

k, π−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
.

These maps are birational.
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Chapter 2

Projective Varieties

2.1 Projective space

Algebraic geometry works better over the natural compactification of An
k , the projective

space Pnk . For one example: in A2
k two different lines can intersect at either one or zero

points, whereas in P2
k two different lines will always intersect in exactly one point. More

generally, in P2
k we’ll be able to show facts such as

[Bezout’s theorem] In P2
k over an algebraically closed field k, two curves of

degrees d and e, that share no irreducible components meet at precisely d ·e
points, counted with multiplicity.

Definition 2.1 (Projective space). For any field k, define the projective n-space

Pnk =
An+1 \ {(0, . . . , 0)}

∼
where ∼ is an equivalence relation defined by (a0, . . . , an) ∼ (b0, . . . , bn) if and only if
(a0, . . . , an) = l(b0, . . . , bn) for some l 6= 0, l ∈ k.

The equivalence class of (a0, . . . , an) ∈ An+1 \{(0, . . . , 0)} is written as [a0 : · · · : an]
or [a] and referred to as a point in Pnk .

Remark 2.2. Two points [a0 : · · · : an] and [b0 : · · · : bn] are equal if and only if the
matrix [

a0 a1 · · · an
b0 b1 · · · bn

]

has rank one if and only if all the 2× 2 minors of the above matrix are equal to zero.

We could equivalently define Pnk to be the set of lines through the origin in An+1
k :

given such a line, any non-origin point on it determines the same point in Pnk as we
have defined it.

We could also think of Pnk as being obtained by taking An
k (not An+1) and adding

points at infinity.
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Example 2.3. P1
k consists of points [a0 : a1] with either a0 6= 0 or a1 6= 0. Note

that if a0 6= 0 then we have [a0 : a1] = [1 : a1/a0]. Consider the partially-defined
function φ : P1

k 99K A1
k sending [a0 : a1] 7→ a1/a0. It is well-defined (i.e., independent of

representative) and one-to-one everywhere it is defined, but it is undefined at [0 : a1]
for a1 6= 0. It is clearly onto. Note that [0 : a1] = [0 : 1] for any a1 6= 0 and so φ is not

defined at just one point: [0 : 1]. Thus, φ induces a bijection P1
k \ {[0 : 1]} ∼=−→ A1

k so we
think of P1

k as the affine line together with one point at infinity, namely [0 : 1].

An inverse of the bijection P1
k \ {[0 : 1]} ∼=−→ A1

k is given by sending t to [1 : t]. For
t 6= 0 we can rewrite this as [1/t : 1]. Now suppose k = R or C and let t go to infinity.
The point [1/t : 1] converges to [0 : 1], as we would hope.

For k = R, one can think of P1
R as a circle. For k = C, think of P1

C as a sphere,
the Riemann sphere. In each case it is the one-point compactification of A1 with its
classical (Euclidean) topology.

Example 2.4. A point in P2
k is [a0 : a1 : a2] with at least one ai 6= 0. We may define

an injection i : A2
k ↪→ P2

k by i(a1, a2) = [1 : a1 : a2]. The complement of its image is
{[0 : a1 : a2] | a1 6= 0 or a2 6= 0}. Note that this complement can be identified with P1

k.
An arbitrary line in A2

k is given parametrically by t 7→ (ta1 + c, ta2 + c) for some
choice of a1, a2 not both zero and any c. Applying i we obtain the parametric line t 7→
[1 : ta1 + c : ta2 + c] which for t 6= 0 can also be written as t 7→ [1/t : a1 + c/t : a2 + c/t].
“Letting t go to ∞” gives the point [0 : a1 : a2].

We thus think of P2 as being A2
k with one point at infinity adjoined for each possible

slope of a line. That is, any two parallel lines in A2 meet at a uniquely determined
point at infinity, and any two non-parallel lines do not meet at infinity.

When k = R, P2
R is the Eulicidean plane with a “circle of points” at infinity. It

can be visualized by starting with the unit disc and identifying antipodal points. The
resulting surface is non-orientable.

In general we have

Pnk = An
k ∪ Pn−1

k = · · · = An
k ∪ An−1

k ∪ · · · ∪ A1
k ∪ {∞}.

In coordinates this looks like

[a0 : · · · : an]↔
{(

a1
a0
, . . . , an

a0

)
∈ An

k , if a0 6= 0

[a1 : · · · : an] ∈ Pn−1, if a0 = 0.

The choice of a0 above is arbitrary. Set

Ui = {[a0 : · · · : an] | ai 6= 0}.

Then Pnk =
⋃n
i=0 Ui with each of the sets Ui in bijection with An

k via

Ψi : Ui → An
k , [a0 : · · · : an] 7→

(
x0

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
.
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When k = R or k = C, Pnk inherits the Euclidean quotient topology. In this topology
the Ui form an atlas of open sets turning P n

k into a manifold. We’ll see that these sets
are also open in the Zariski topology as well (later).

Friday, February 7

2.2 Projective varieties

2.2.1 Graded rings

A (commutative) ring R is N-graded (respectively, Z-graded) if its underlying abelian
group under + is endowed with an internal direct sum decomposition R =

⊕
i∈NRi

(resp., R =
⊕

i∈ZRi) such that if x ∈ Ri and y ∈ Rj then xy ∈ Ri+j.
Elements of Ri are known as homogenous elements of degree i. Note that every

element r or R admits a unique decomposition as r =
∑

i ri (finite sum) with ri
homogeneous of degree i.

An homogeneous ideal I of a graded ring R is an ideal in the usual sense (closed
under addition and scaling) such that the following equivalent properties hold:

1. I is generated by homogenous elements (not necessarily all of the same degree),
2. for each a ∈ I, if a =

∑
j aj with aj ∈ Rj, we have aj ∈ I for all j, or

3. I =
⊕

Ij is the internal direct sum of Ij := I ∩Rj, j ∈ Z.
If I is a homogenous ideal in a graded ring R, then the quotient ring R/I is canonically
graded, by setting (R/I)j := {x+I | x ∈ Rj} ∼= Rj/Ij, and the canonical mapR� R/I
preserves the grading.

Example 2.5. The standard N-grading on R = k[X0, . . . , Xn] is given by letting Rj

be all k-linear combinations of monomials of degree j, where a monomial refers to an
element of the formXe0

0 · · ·Xen
n with ei ≥ 0 and its degree is

∑
i ei. So, a polynomial f ∈

R is homogenous of deegree d if it has the form
∑

e0,...,en;e0+···+en=d le0,...,enX
e0
0 · · ·Xen

n .

Remark 2.6. If I, J are homogeneous ideals then so are I + J , IJ , I ∩ J , I : J and the
associated primes of I.

An issue we have in projective space is that polynomials do not give well-defined
functions on Pnk . However the vanishing set of a homogeneous polynomials is well-
defined.

Lemma 2.7. Suppose f ∈ k[X0, . . . , Xn] is homogeneous. If f vanishes for one choice
of representatives for a point [a0 : · · · : an] ∈ Pnk , then it vanishes for all choices of
representatives.

Proof. Suppose f(X0, . . . , Xn) =
∑

e0,...,en;e0+···+en=d ce0,...,enX
e0
0 · · ·Xen

n . We have that

(la0)e0 · · · (lan)en = l
∑

i eiae00 · · · aenn , so we conclude

f(la0, . . . , lan) = ldf(a0, . . . , an).

Thus f(la0, . . . , lan) = 0 iff f(a0, . . . , an) = 0.
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The geometric interpretation of the Lemma is that if f is homogenous, then the
affine variety V (f) ⊆ An+1

k is a union of lines passing through the origin. In other
words, it is a cone. More generally, if I is a homogeneous ideal then the affine variety
V (I) is a cone.

2.2.2 Projective Varieties

Lemma 2.7 shows that the following definition makes sense.

Definition 2.8. Given a homogenous polynomial f ∈ k[X0, . . . , Xn], let

V P(f) = {[a0 : · · · : an] ∈ Pnk | f(a0, . . . , an) = 0} ⊆ Pnk .

More generally, if I ⊆ k[X0, . . . , Xn] is a homogeneous ideal, define

V P(I) = {[a0 : · · · : an] ∈ Pnk | f(a0, . . . , an) = 0, ∀f ∈ I homogeneous} ⊆ Pnk .

A projective variety is a subset of Pnk for some n of the form V P(I) for some homogenous
ideal I ⊆ k[X0, . . . , Xn].

Geometrically, V P(I) is the quotient of the punctured affine cone V A(I) under ∼

V P(I) = V A(I) \ {(0, . . . , 0)}/ ∼ . (2.1)

Let us look at some examples now.

Example 2.9. • Pnk = V P((0) is a projective variety;
• ∅ = V ((1)) is an projective variety;
• Any singleton {[a0 : · · · : an]} is a projective variety, since it is the zero locus of

the ideal of 2 × 2 minors of the matrix below, which are homogenous of degree
one (linear forms) [

X0 X1 · · · Xn

a0 a1 · · · an

]
;

• Linear subspaces of kn are affine varieties;
• Given a homogeneous polynomial f , the projective variety V P(f) is called a

projective hypersurface;
• Given a linear polynomial ` = c0X0 + c1X1 + · · · cnXn with ci ∈ k (no constant

term), the projective variety V P(`) is called a projective hyperplane;

Our focus will be on thinking of projective varieties as being affine varieties with
points added at infinity. Henceforth we shall write V A for what was previously written
as V (affine variety), to avoid confusion.

Example 2.10. Let f = X2 − Y 2 − Z2. The affine zero locus of this is the classical
(double) cone in A3

k. Let X = V P(f) ⊆ P2 be the associated projective variety. By
(2.1) at least over k = R this ought to be a circle.
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Let us intersect X with the copy of A2
k contained in P2 given by U2 = {[a : b : c] |

c 6= 0}. We have X ∩ U2 = V A(x2 − y2 − 1) ⊆ A2, which over k = R is a hyperbola.
Since X∩ (P2

k \U2) = {[1 : 1 : 0], [1 : −1 : 0]}, we may think of this hyperbola as having
two points at infinity. Note that upon adding these points, we do indeed get a circle.

In the picture below x1 = X, x2 = Y and the points at infinity are marked as a
and b. Note that the two points marked as a are actually identical and the two points
marked as b are also identical since a is the unique “point at ∞” on the line x1 = x2

and b is the unique “point at ∞” on the line x1 = −x2.

6. Projective Varieties I: Topology 51

(b) Show that a projective variety X is irreducible if and only if its homogeneous coordinate ring
S(X) is an integral domain.

Exercise 6.31. In this exercise we want to show that an intersection of projective varieties is never
empty unless one would expect it to be empty for dimensional reasons — so e. g. the phenomenon
of parallel non-intersecting lines in the plane does not occur in projective space.

So let X ,Y ⇢ Pn be non-empty projective varieties. Show:

(a) The dimension of the cone C(X)⇢ An+1 is dimX +1.

(b) If dimX +dimY � n then X \Y 6= /0.

We have just seen in Remark 6.27 (b) that for an affine variety X = V (J)⇢ An the homogenization
Jh gives an ideal such that the closed set Vp(Jh)⇢ Pn restricts to X on An ⇢ Pn. In fact, we will now
show that Vp(Jh) is even the smallest closed set in Pn containing X , i. e. the closure X of X in Pn.
As this will be a “compact” space in the sense of Remarks 6.3 and 6.4 we can think of this closure
X as being obtained by compactifying X by some “points at infinity”. For example, if we start with
the affine hyperbola X = Va(x2

1� x2
2�1)⇢ A2 in the picture below on the left, its closure

X = Vp
�
(x2

1� x2
2�1)h�= Vp(x2

1� x2
2� x2

0)⇢ P2

adds the two points a and b at infinity as in Example 6.15. In coordinates, as A2 ⇢ P2 is given by
the inequality x0 6= 0, these added points at infinity are the points of X with x0 = 0, i. e.

X \Vp(x0) = Vp(x2
1� x2

2,x0) = {a,b} with a = (0:1 :1) and b = (0:1 : �1).

x1

x2

X

a

b

b

a

x1

x2

X
at infinity

add points

Proposition 6.32 (Computation of the projective closure). Let JEK[x1, . . . ,xn] be an ideal. Consider
its affine zero locus X = Va(J)⇢ An, and its closure X in Pn.

(a) We have X = Vp(Jh).

(b) If J = h f i is a non-zero principal ideal then X = Vp( f h).
10

Proof.

(a) Clearly, the set Vp(Jh) is closed and contains X . In order to show that Vp(Jh) is the smallest
closed set containing X let Y � X be any closed set; we have to prove that Y � Vp(Jh). As
Y is closed we have Y = Vp(J0) for some homogeneous ideal J0. Now any homogeneous
element of J0 can be written as xd

0 f h for some d 2 N and f 2 K[x1, . . . ,xn] (in fact, every
homogeneous polynomial can be written in this way), and for this element we have

xd
0 f h is zero on X ⇢ Pn (X is a subset of Y )

) f is zero on X ⇢ An (x0 6= 0 on X ⇢ An)

) f 2 Ia(X) = Ia(Va(J)) =
p

J (Proposition 1.10)

) f m 2 J for some m 2 N

) ( f h)m = ( f m)h 2 Jh for some m 2 N (Construction 6.25 (b))

) f h 2
p

Jh

) xd
0 f h 2

p
Jh.

We may also consider X ∩ U0 = V A(1 − y2 − z2), which is already a circle in the
real affine plane. Where are the points at infinity? They are imaginary: [0 : 1 : i] and
[0 : 1 : −i].
Example 2.11 (The smooth quadric surface). In mathematics, a quadric or quadric
hypersurface is the vanishing locus of a polynomial equation of degree 2. It turns out
(because symmetric matrices can be diagonalized over an algebraically closed field)
that after making linear changes of coordinates there is a unique smooth quadric given
by the equation

F = X2
0 +X2

1 + · · ·+X2
n.

We’ll study the case n = 3 and take instead the equation to be F = XY − ZW . Note
that this can be put into the form X2+Y 2−Z2−W 2 by substituting X 7→ X+iY, Y 7→
X − iY, Z 7→ Z + iW,W 7→ Z − iW .

A picture of V P(F ) ∩ U3 is included below. For k = R and after the substitution
described above it is the hyperboloid V A(x2 + y2 − z2 − 1), which is known to be a
ruled surface. Specifically, there are two families of lines on this surface as pictured.
We will explain this later by providing an isomorphism V P(XY − ZW ) ∼= P1

k × P1
k.
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2.2.3 Homogenization and dehomogenization

Definition 2.12. Given a not-necessarily homogenous polynomial f(x1, . . . , xn) ∈
k[x1, . . . , xn] of degree d (i.e., the highest degree of any of its non-zero terms is d)
define its homogenization to be the homogenous polynomial fh ∈ k[X0, . . . , Xn] given
by

fh = Xd
0f(X1/X0, . . . , Xn/X0).

Given a homogeneous polynomial F ∈ k[X0, . . . , Xn], the (usually) non-homogenous
polynomial f(x1, . . . , xn) = F (1, x1, . . . , xn) is called the dehomogenization of F .

Example 2.13. The homogenization of y2−x2(x+1) = y2−x3−x2 is Y 2Z−X2(X+
Z) = Y 2Z−X3−X2Z. The homogenization of y2−x2 is Y 2−X2, technically viewed
as belonging to k[X, Y, Z].

In general, the homogenization amounts to tacking on the smallest possible powers
of a new variable to each term in order to make it homogenous. Beware: While
the dehomogenization of the homogenization of f is f , the opposite can fail. For
instance, the homogenization of the dehomogenization of F = X4

0 + X1X
3
0 + X2

2X
2
0 is

X2
0 +X1X

1
0 +X2

2 6= F . One does get equality so long as X0 does not divide F .

Definition 2.14. Given an ideal I ⊆ k[x1, . . . , xn] its homogenization is the ideal

Ih = (fh | f ∈ I).

Warning: it is not true that if I = (f1, . . . , fr) then Ih = (fh1 , . . . , f
h
r ).

Example 2.15 (The projective twisted cubic). Let I = (x2
1− x2, x

3
1− x3) be the ideal

of the affine cubic curve. Then x1x2 − x3 and x2
2 − x1x3 are elements of I and

Ih = (X2
1 −X0X2, X

3
1 −X2

0X3, X1X2 −X0X3, X
2
2 −X1X3).1

In fact the second generator above is redundant, so

Ih = (X2
1 −X0X2, X1X2 −X0X3, X

2
2 −X1X3)

is generated by the maximal minors of
[
X0 X1 X2

X1 X2 X3

]
.

Proposition 2.16. If Ih is the homogenization of I ⊆ k[x1, . . . , xn], then V P(Ih)∩U0

corresponds to V A(I) under the bijection

Ψ0 : U0

∼=−→ An
k , Ψ0([a0 : · · · : an]) = (a1/a0, . . . , an/a0)

whose inverse is

Ψ−1
0 : An

k

∼=−→ U0 Ψ−1
0 (b1, . . . , bn) = [1 : b1 : · · · : bn].

1This can be computed using Gröbner bases. See Ideals, varieties, and algorithms by Cox, Little
and O’shea, Theorem 4, p. 388.
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Proof. We have

(b1, . . . , bn) ∈ V A(I) ⇐⇒ f(b1, . . . , bn) = 0,∀f ∈ I
⇐⇒ fh(1, b1, . . . , bn) = 0

⇐⇒ [1 : b1 : · · · : bn] ∈ V P(Ih) ∩ U0.

The result follows since Ψ−1
0 (b1, . . . , bn) = [1 : b1 : · · · : bn].

Definition 2.17. The projective variety V P(Ih) ⊆ Pnk is called the projective closure
of V A(I) ⊆ An

k .

Monday, February 10

2.3 Projective Nullstellensatz

We have previously associagted a subset of Pnk to each homogeneous ideal of k[X0, . . . , Xn].
Now we do the opposite:

Definition 2.18. Given any subset W of Pnk , set

IP(W ) = (f ∈ k[X0, . . . , Xn] homogenous | f(a0, . . . , an) = 0, ∀[a0 : · · · : an] ∈ W ) ,

that is, the ideal generated by the homogeneous polynomials that vanish at all points
of W . Note that IP(W ) is a homogeneous ideal of k[X0, . . . , Xn] since, by construction,
it is generated by homogenous elements.

Exercise 2.19. Show that

IP(W ) = {f1+· · ·+fm | fi homogeneous, fi(a0, . . . , an) = 0, ∀i and all [a0 : · · · : an] ∈ W}.

Exercise 2.20. Show IP(W ) is a radical ideal.

In projective space there is a very troublesome ideal. This corresponds to the origin
which we removed from An+1

k to form Pnk .

Definition 2.21. The homogenous ideal m = (X0, . . . , Xn) is called the irrelevant ideal
of k[X0, . . . , Xn].

Note that the irrelevant ideal is a homogeneous radical ideal (in fact it’s prime)
and satisfies V (X0, . . . , Xn) = ∅ = V (1). So we cannot hope for a bijection between all
homogeneous radical ideals and projective varieties. To get a true bijection we have to
remove the irrelevant ideal as follows.

Definition 2.22. Let I be an ideal of k[X0, . . . , Xn]. Its saturation Isat with respect
to the irelevant idela m = (X0, . . . , Xn) is the ideal

Isat =
⋃

i≥1

I : mi = {f ∈ k[X0, . . . , Xn] | f ·mi ⊆ I for some i ≥ 1}.
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Exercise 2.23. Show that if I =
⋂m
i=1Qi is a primary decomposition with Qm m-

primary, then Isat =
⋂m−1
i=1 Qi. Deduce that V P(Isat) = V P(I).

We can now characterize all the ideals whose projective vanishing set is empty.

Proposition 2.24. For a homogeneous ideal I ⊆ S = k[X0, . . . , Xn] TFAE
1. V P(I) = ∅
2.
√
I ∈ {(1),m}

3. Sd ⊆ I for some d ≥ 1, (Sd is the set of homogeneous polynomials of degree d)
4. Isat = S.

Exercise 2.25. Prove the proposition.

Theorem 2.26 (Projective Nullstellensatz). For an algebraically closed field k, the
functions V P and IP determine an order-reversing bijection between the partially or-
dered sets (with respect to containment)

Projective Varieties in Pnk
V P
←→
IP

homogenous, radical ideals in k[X0, . . . , Xn]

that are not equal to the irrelevant ideal.

That is,
V P(IP(X)) = X and IP(V P(J)) = J

for X any projective variety and J any homogenous, radical ideal other than the irre-
levant one.

Remark 2.27. Note IP(V P((X0, . . . , Xn))) = k[X0, . . . , Xn].

Proof of the Nullstellensatz. Let me just prove the hardest part (and the only part, in
fact, that requires k to be algebraically closed): IP(V P(J)) ⊆ J for a radical ideal J that
is not equal to the irrelevant one. We’ll do so by reducing to the affine Nullstellensatz
(Theorem 1.43).

If J = (1), the claimed containment is true because VP(1) = ∅ and IP(∅) = (1).
Denote m = (X0, . . . , Xn). Now assume J is a proper, homogeneous, radical ideal and
that J 6= m. Since J is homogeneous and all non-constant homogeneous polynomials
belong to m, it follows that J ( m. In particular, since the containment is proper,
by the affine Nullstellensatz, we have V A(J) ) {(0, . . . , 0)}. That is, the affine cone
V A(J) contains at least one point other than origin (and hence it contains the entire
line through the origin and such a point).

Pick a homogenous element f ∈ IP(V P(J)). Then f([a0 : · · · : an]) = 0 for all [a0 :
· · · : an] ∈ V P(J). It follows that f(a0, . . . , an) = 0 for all points (an, . . . , a0) ∈ V A(J)\
{(0, . . . , 0)}. As f ∈ J ( m, f cannot be a non-zero constant; in particular, since f is
homogeneous and non-constant, f(0, . . . , 0) = 0. We have shown f ∈ I(V A(J)), and
thus by the classical Nullstellensatz we have f ∈ J .

We have shown that every homogenous element of IP(V P(J)) belongs to J . Since
IP(V P(J)) is a homogenous ideal, it is generated by its homogeneous elements, and
thus IP(V P(J)) ⊆ J .
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2.4 Zariski topology

Definition 2.28. The Zarsiki topology on Pnk is the topology whose closed subsets are
the projective varieties contained in Pnk and the open subsets are the complements of
projective varieties. This is a topology since

1. Pnk = V P(0),
2. ∅ = V P(k[X0, . . . , Xn]),
3.
⋂
α V

P(Iα) = V P(
∑

α Iα) for any collection {Iα} of homogeneous ideas (and an
arbitrary sum of homogeneous ideals is again homogeneous), and

4. V P(I) ∪ V P(J) = V P(I ∩ J) (and an intersection of homogenous ideals is again
homogeneus).

Each of these can be justified by by considering the analgous facts for affine cones.
More generally, for a projective variety W ⊆ Pnk , the Zariski topology on W is the

inherited subspace topology. If W = V P(I) for a homogeneous radical ideal I, then the
closed subsets of W are given by subsets of the form V P(J) where J us a homogenous
radical ideal such that J ⊆ I.

Example 2.29. The Zariski topology on P1
k is the “finite complement” topology: A

set is open if and only if it is empty or is it the complement of a finite subset of P1.
This holds since, as we saw above, every one element subset is closed and hence every
finite subset is closed. If F (X, Y ) is any homogeneous polynomial in two variables,
then F factors as

∏
i(biX − aiY ) for some ai, bi ∈ k, and thus the zero locus of F is

the finite set {[a1 : b1], . . . , [ad : bd]}. This proves that every closed subset of P1, other
than P1

k itself, is finite.

Definition 2.30. Let F ∈ k[X0, . . . , Xn] be a homogenous polynomial. Let DP(F )
denote the open subset

DP(F ) = Pnk \ V Pn

(F ) = {[a0 : · · · an] ∈ Pnk | F (a0, . . . , an) 6= 0}.

We call any such an open subset distinguished. More generally for a projective variety
W ⊆ Pn, we write DP

W (F ) for the distinguished open subset W \ V Pn
(F ).

As with distinguished open subsets in the affine setting,

Proposition 2.31. The distinguished open subsets of a projective variety form a basis
for the Zariski topology.

Proof. This holds since DP(F ) ∩ DP(G) = DP(F · G) (note that the product of two
homogenous polynomials is again homogeneous). Moreover, every closed subset has the
form Z = V P(F1, . . . , Fm) for homogeneous polynomials F1, . . . , Fm and V P(F1, . . . , Fm) =
∩jV P(Fj) so that Pn \ Z = ∪jDP(Fj). That is, every open subset is a finite union of
distinguished ones, just as in the affine case.

Example 2.32. For any i, DP(Xi) is the open subset {[a0 : · · · : an] ∈ Pnk | ai 6= 0}.
This is the subset I wrote as Ui before, so Ui = DP(Xi).
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Recall that for any i with 0 ≤ i ≤ n there is a bijection

Ψi : An
k → Ui, given by Ψ(b1, . . . , bn) = [b1 : · · · : bi−1 : 1 : bi : · · · : bn] (2.2)

with inverse given by

Ψ−1
i ([a0 : · · · : an]) = (a0/ai, . . . , âi/ai, . . . , an/ai). (2.3)

Proposition 2.33. The map Ψi in (2.2) is a homeomorphism (continuous with con-
tinuous inverse) for each i, where An

k is the usual affine Zariski topology and Ui is given
the subspace topology of the Zariski topology on Pnk .

Proof. For notational simplicity, assume i = 0. Since the distinguished open sets form
a basis for either topology, it suffices to show distinguished open subsets correspond to
each other under the bijection Ψ0. Thanks to Proposition 2.16, given f ∈ k[t1, . . . , tn]
the open subset D(f) ⊆ An

k corresponds, under ψ0, to the open subset DP(F )∩U0 of U0,

where F = X
deg(f)
0 (f(X1/X0, . . . , Xn/X0)), the homogenization of f . Similarly, thanks

to Proposition 2.16, given any homogeneous polynomial F , the open subset DP(F )∩U0

of U0 corresponds, under Ψ0, to DA(f) where f(t1, . . . , tn) := F (1, t1, . . . , tn) is the
dehomogenization of F . In symbols, we have:

Ψ−1
0 (DP(F ) ∩ U0) = DA(F (1, t1, . . . , tn))

(Ψ−1
0 )−1(DA(f)) = DP(fh).

Because preimage commutes with union, and arbitrary open subsets are unions of
distinguished ones, this suffices to finish the proof.

So, Pnk is the union of n+1 open subsets, U0, . . . , Un, each of which is homeomorphic
to affine n-space.

Wednesday, February 12 – snow day

Friday, February 14

2.5 Regular functions and regular maps

Definition 2.34. Let X ⊆ Pnk be a projective variety. A function f : X → Ak
1 is a

regular function if f |X∩Ui
is a regular function on each set X ∩ Ui identified with a

subset of Ank via the map Ψi : Ui → An
k (2.2). This means that for each 0 ≤ i ≤ n and

for each point [a] ∈ X ∩ Ui there exists an open set U ′ so that [a] ∈ U ′ ⊆ X ∩ Ui and
polynomials

g, h ∈ k[x0, . . . , xi−1, xi+1, . . . , xn] such that f([a]) =
g(ψi([a]))

h(ψi([a]))
on U ′
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(this includes the fact that the denominator must be non-zero).
Homogenizing g and h using the variable Xi to polynomials g̃ and h̃ of the same

degree, that is for d = max{deg(g), deg(h)} denoting

g̃(X0, . . . , Xn) = Xd
i g(X0/Xi, . . . , Xi−1/Xi, . . . , Xn/Xi)

g̃(X0, . . . , Xn) = Xd
i g(X0/Xi, . . . , Xi−1/Xi, . . . , Xn/Xi).

we can re-write

f([a]) =
g̃([a])

h̃([a])
on U ′.

So, an equivalent definition is that a function f : X → Ak
1 is a regular function on

X if for each point [a] ∈ X there exists an open set U ′ of X with [a] ∈ U ′ and
g̃, h̃ ∈ k[X0, . . . , Xn] homogeneous polynomials of the same degree so that f = g̃/h̃ on
U ′ (this includes the stipulation that h̃ does not vanish on U ′.

Definition 2.35. Let X ⊆ Pnk be a projective variety. A function f : X → Pkm is a
regular map or morphism of projective varieties if its components, namely the functions
f |f−1(Ui) : f−1(Ui)→ Ui ∼= Am

k are regular functions, that is

f([a]) =

[
g0([a])

h0([a])
: · · · : gi−1([a])

hi−1([a])
: 1 :

gi+1([a])

hi+1([a])
: · · · : gm([a])

hm([a])

]

on some Zariski open set U of X so that a ∈ U and gi, hi ∈ k[X0, . . . , Xn] are homoge-
neous polynomials with deg(gi) = deg(hi) and hi([a]) 6= 0 for all 0 ≤ i ≤ n.

Clearing denominators (multiplying by
∏
hi([a])) we can write

f([a]) = [f0([a]) : · · · : fi−1([a]) : fi([a]) : fi+1([a]) : · · · : fn([a])] on U (2.4)

where f0, . . . , fn ∈ k[X0, . . . , Xn] are homogeneous polynomials of the same degree
(equal to the degree of

∏
hi([a])) so that V P(f0, . . . , fn) ∩ U = ∅.

So, an equivalent definition of a regular map f : X → Pkm is a function as in (2.4).
A regular map f : X → Y , where Y ⊆ Pmk is a projective variety, is a regular map
f : X → Pkm whose image is contained in Y .

Exercise 2.36. Prove that for m,n > 0 every regular map f : Pnk → Pmk is defined
globally, i.e. it must be of the form

f = [f0 : f1 : · · · : fm] with f0, . . . , fm ∈ k[X0, . . . , Xn]

homogeneous polynomials of the same degree such that V P(f0, . . . , fm) = ∅.

Definition 2.37. Projective varieties X and Y are isomorphic provided there are
regular maps f : X → Y and g : Y → X that are inverse to each other. In this case f
and g are called projective isomorphisms.
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Example 2.38. Let A ∈ GLn+1(k) and consider the regular map ϕA : Pnk → Pnk

ϕA([a0 : . . . : an]) = AaT =

[
n∑

j=0

a0jXj :
n∑

j=0

a1jXj : . . . ,
n∑

j=0

anjXj

]
.

Since A is invertible, ϕA is invertible too with regular inverse ϕA−1 . Thus ϕA is an
isomorphism.

It turns out all automorphisms of Pnk are of this form.

Exercise 2.39. Let PGLn+1(K) = GLn+1(k)/ ∼ where A ∼ B if and only if B = λA
for some 0 6= λ ∈ k. Show that Aut(Pnk) ∼= PGLn+1(K) as groups.

We call the map ϕA in Example 2.38 a linear change of coordinates on Pnk .

Definition 2.40. The projective subvarieties X, Y of Pnk are projectively equivalent if
there is a linear change of coordinates ϕA such that ϕk[X] = Y .

Example 2.41. V P(X0) is projectively equivalent to V P(Xi) by setting A to be the
matrix that implements the transposition of the 0-th and i-th coordinates.

Inspired by the coordinate ring of an affine variety we define

Definition 2.42. The homogeneous coordinate ring of a projective variety X ⊆ Pnk is

kP[X] =
k[X0, . . . , Xn]

IP(X)
.

Since IP(X) is a homogeneous ideal, kP[X] is a graded ring. Warning: not every
element of kP[X] is a well-defined function on X; only the homogeneous elements are
well-defined as functions on X.

Warning: the coordinate ring is no longer helpful in determining whether two
projective varieties are isomorphic. In particular, an isomorphism of projective
varieties need not induce an isomorphism between their coordinate rings.
However projective equivalence of varieties does lead to an isomorphism of coordinate
rings.

Exercise 2.43. 1. Show that the coordinate rings of projectively equivalent vari-
eties are isomorphic.

2. Show by example that the homogeneous coordinate ring of a projective variety
is not invariant under isomorphisms, i.e. that there are isomorphic projective
varieties X, Y such that the rings kP[X] and kP[Y ] are not isomorphic.

Example 2.44 (Coordinate projection). Let [a] = [1 : 0 : · · · : 0] and consider the
map

π : Pnk \ {[a]} → Pn−1
k , π([b0 : b1 : · · · : bn]) = [b1 : · · · : bn].

This is a regular map called the projection from a onto the hyperplane V (X0).
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In Example 1.99 we considered the projection of a sphere from its north pole onto
the horizontal coordinate plane. Recall that this was a partially defined rational map,
undefined at the north pole. Below we project a projective “circle” C from its north
pole and we find that the resulting projection is defined everywhere on C.

Example 2.45 (Stereographic projection in projective space). Consider C = V P(X2 +
Y 2 − Z2) ⊆ P2

k. In Example 2.10 we saw that C ∩ U2 is a circle. Consider the point
[a] = [0 : 1 : 1] ∈ C and project from it onto the line L = V (Y ) ∼= P1

k. In coordinates,
this map restricted to U2 is

f([x : y : 1]) =

[
x

y − 1
: 0 : 1

]
.

Homogenizing using the variable Z gives

f([X : Y : Z]) =

[
X

Y − Z : 0 : 1

]
= [X : 0 : Y − Z].

The above function is defined on P2
k \ V P(−X, Y − Z) = P2

k \ {[0 : 1 : 1]} = P2
k \ {a}.

But we can “massage” it to work at this point as well since

f([X : Y : Z]) = [X : 0 : Y − Z] on P2
k \ {[0 : 1 : 1]}

= [X(Y + Z) : 0 : (Y − Z)(Y + Z)]

= [X(Y + Z) : 0 : −X2]

= [Y + Z : 0 : −X] on P2
k \ {[0 : −1 : 1]}.

Then we can set f : C → L = P2
k to be given by

f ([X : Y : Z]) =

{
[X : 0 : Y − Z]. on C \ {[0 : 1 : 1]}
[Y + Z : 0 : −X] on C \ {[0 : −1 : 1]}

and the computation above shows the two rules agree on the overlap. This shows that
f is regular on C. In particular, with this rule

f(a) = f([0 : 1 : 1]) = [2 : 0 : 0] = [1 : 0 : 0].

Intuitively, the “fix” here for defining f([a]) is to say that the projection of [a] is
obtained by taking the tangent line to C at [a] and intersecting this with L. Unlike
in affine space where these two lines are parallel, in projective space these two lines
intersect at the point at infinity of L, which is [1 : 0 : 0].

See the figure below for an illustration.
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and its intersection point with L is (0:x1 : · · · :xn), i. e. f (x) with the identification L⇠= Pn�1.
We call f the projection from a to the linear subspace L. Note however that the picture
below does not show a standard affine open subset Ui = {(x0 : · · · :xn) : xi 6= 0}, since none
of these subsets contains both a and (a non-empty open subset of) L.

Of course, the same construction works for any point a 2 Pn and any linear subspace L
of dimension n� 1 not containing a — the corresponding morphism then differs from the
special one considered above by a projective automorphism as in (a).

x

a

f (x)
L

(c)

X

x

a

f (x)
f (a)

L
(b)

(c) The projection morphism f : Pn\{a} ! Pn�1 as in (b) cannot be extended to the point a.
The intuitive reason for this is that the line through a and x (and thus also the point f (x))
does not have a well-defined limit as x approaches a. This changes however if we restrict the
projection to a suitable projective variety: For X = Vp(x0x2� x2

1) as in the schematic picture
above on the right consider the map

f : X ! P1, (x0 :x1 :x2) 7!
(

(x1 :x2) if (x0 :x1 :x2) 6= (1:0 :0),

(x0 :x1) if (x0 :x1 :x2) 6= (0:0 :1).

It is clearly well-defined since the equation x0x2�x2
1 = 0 implies (x1 :x2) = (x0 :x1) whenever

both these points in P1 are defined. Moreover, it extends the projection as in (b) to all of X
(which includes the point a), and it is a morphism since it is patched together from two
projections as above. Geometrically, the image f (a) is the intersection of the tangent to X at
a with the line L.

This geometric picture also tells us that f is bijective: For every point y 2 L the restriction
of the polynomial x0x2�x2

1 defining X to the line through a and y has degree 2, and thus this
line intersects X in two points (counted with multiplicities), of which one is a. The other
point is then the unique inverse image f�1(y). In fact, it is easy to check that f is even an
isomorphism since its inverse is

f�1 : P1! X , (y0 :y1) 7! (y2
0 :y0y1 :y2

1),

which is a morphism by Lemma 7.4.

Note that the example of the morphism f above also shows that we cannot expect every
morphism between projective varieties to have a global description by homogeneous poly-
nomials as in Lemma 7.4. We will see in Exercise 7.8 however that there is always such a
global description for morphisms between projective spaces.

(d) Now let X ⇢ P2 be any projective conic, i. e. an irreducible quadric curve. Assuming that
charK 6= 2, we know by Exercise 4.12 that the affine part X \A2 is isomorphic to Va(x2�x2

1)
or Va(x1x2�1) by a linear transformation followed by a translation. Extending this map to a
projective automorphism of P2 as in (a), the projective conic X thus becomes isomorphic to
Vp(x0x2�x2

1) or Vp(x1x2�x2
0) by Proposition 6.32 (b). So by (c) we see that every projective

conic is isomorphic to P1.

Exercise 7.6. Show by example that the homogeneous coordinate ring of a projective variety is not
invariant under isomorphisms, i.e. that there are isomorphic projective varieties X ,Y such that the
rings S(X) and S(Y ) are not isomorphic.

Exercise 7.7. Let m,n 2 N>0. Prove:
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Monday, February 17 & Wednesday, February 19

2.6 Interesting projective varieties

2.6.1 The Segre variety

So far we know that a product of affine spaces Am
k ×An

k = Am+n
k is an affine space, thus

an affine variety. We don’t know yet that a product of projective spaces Pmk ×Pnk is an
projective variety. The purpose of this section is to define a projective variety which
is in bijection with Pmk × Pnk , thus allowing us to identify Pmk × Pnk with a projective
variety.

Definition 2.46. For integers m ≥ 0, n ≥ 0, the Segre embedding is the map

Σm,n : Pmk × Pnk → P(m+1)(n+1)−1

Σm,n ([a0 : · · · : am], [b0 : · · · : bn]) = [a0b0 : a0b1 : · · · : a0bn : a1b0 : · · · : a1bn : · · · : ambn].

The Segre variety Sm,n = Im(σm,n) ⊆ P(m+1)(n+1)−1 is the image of the above map.

We will see below that the Segre map is a injection. We declare that the product
Pmk ×Pnk is a projective variety by identifying it with Sm,n by means of the above map.

Example 2.47. Consider the map

Σ1,1 : P1
k × P1

k → P3
k, ϕ([s, t], [u, v]) = [su : sv : tu : tv].

We can see that this map is well defined since the identity

(su : sv : tu : tv) = (s, t) ∩ (u, v)

ensures that

V A(su : sv : tu : tv) = V A(s, t) ∪ V A(u, v) = {(0, 0)} × A2 ∪ A2 × {(0, 0)}.

In words, this means that su : sv : tu : tv vanish if and only if s = t = 0 or u =
v = 0. But neither of these are possible since [s : t], [u : v] ∈ P1

k. Let k[P 3
k ] =

k[Z0,0, Z0,1, Z1,0, Z1,1].
We see that this map is a injection by constructing a left inverse as follows:

ϕ : S1,1 → P1
k × P1

k, ϕ([a0,0, a0,1, a1,0, a1,1]) =

{
[a0,0, a0,1] on D(Z0,0) ∩S1,1

[a1,0, a1,1] on D(Z1,0) ∩S1,1.

Note that ϕ ◦Σ1,1([s, t], [u, v]) =

{
[su : sv] = [u : v] if s 6= 0

[tu : tv] = [u : v] if t 6= 0.
= idΣ1,1 This also shows

that ϕ is well defined (the two rules agree on the intersection of their domains).
Now let’s show that S1,1 is a projective variety.
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Claim 2.48. S1,1 = V P(Z0,0Z1,1 − Z0,1Z1,0). (See Exercise 2.11 for an illustration.
Note that you can see two sets of parallel lines, representing the lines {pt} × P1 and
P1 × {pt}. )

Consider the equation F = Z0,0Z1,1 − Z0,1Z1,0. Then F (su, sv, tu, tv) = 0 implies
S1,1 ⊆ V P(Z0,0Z1,1 − Z0,1Z1,0). For the converse, take a point [a0,0, a0,1, a1,0, a1,1] ∈
V P(Z0,0Z1,1 − Z0,1Z1,0). This means that the determinant of the matrix below is zero

[
a0,0 a0,1

a1,0 a1,1

]
.

Thus the rows are linearly dependent, that is, there exist s, t, u, v ∈ k such that
(a0,0 a0,1) = s(u v) = (su sv) and (a1,0 a1,1) = t(u v) = (tu tv). Thus [a0,0, a0,1, a1,0, a1,1] ∈
S1,1.

We can do this more generally. Here is a better way of thinking about the map
Σm,n. Regard a point in P(m+1)(n+1)−1 as a non-zero (m+ 1)× (n+ 1) matrix, with two
such matrices deemed equal if one is a non-zero scalar times the other. Then we can
think of the map Σm,n as given by the (awkward) matrix product

Σm,n([a], [b]) = [aTb]. (2.5)

With this latter description (2.5), it is clear that the image of Σm,n is contained in

W := {[A] ∈ Pmn+m+n | A is a (m+ 1)× (n+ 1) matrix of rank exactly one}

since the rank of a product of matrices is less or equal to the rank of each of the factors.

Theorem 2.49. For any m and n, the Segre map is injective and the Segre variety
Sm,n is a projective subvariety of P(m+1)(n+1)−1. It can be described as the variety of
matrices of rank one

Sm,n = V P
k


2× 2 minors of




Z0,0 Z0,1 · · ·Z0,m

Z1,0 Z1,1 · · ·Z1,m
...

... · · · ...
Zn,0 Zn,1 · · ·Zn,m.







= V P({Zi,jZs,t − Zi,tZs,j | i < s, j < t}).

Proof. It is clear from (2.5) that Σm,n is a well-defined function since aTb = 0 if and
only if a = 0 or b = 0. By the remarks above we have that Sm,n ⊆ W . For the
converse take a matrix [A] ∈ W . Then A has a non-zero row, call it a and so it can be
written as

A =




b1a
b2a
...

bma


 = aTb.
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for some b1, . . . , bm not all zero (one of them is 1).
Write the (m+ 1)(n+ 1) homogeneous coordinate functions of P(m+1)(n+1)−1 as Zi,j

for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Since a matrix has rank one if and only if it is non-zero
and all its 2× 2 minors vanish, we have

Sm,n = W = V P({Zi,jZs,t − Zi,tZs,j | i < s, j < t}).

This proves Sm,n is a projective variety.

The Segre embedding leads to the notion of Segre coordinates for points on Pm×Pn.
The projective coordinate ring of Sm,n is

kP[Sm,n] = kP[P(m+1)(n+1)−1]/I = k[Zi,j]/I

where I is the ideal generated by the two-by-two determinants of the matrix (Zi,j)i,j
of variables. The k-algebra map

k[Zi,j]→ k[X0, . . . , Xm, Y0, . . . , Yn], Zi,j 7→ XiYj

induces and isomorphism

θ : kP[Sm,n] ∼= k[XiYj] ⊆ k[X0, . . . , Xm, Y0, . . . , Yn] (2.6)

The Segre embedding allows us to describe all closed subsets of Pm × Pn.

Definition 2.50. Given two lists of variables X0, . . . , Xm and Y0, . . . , Yn, declare an
element F of k[X0, . . . , Xm;Y0, . . . , Yn] to be bihomogenous of bidegree (d, e) if it is a k-
linear combination of monomials of the form X i0

0 · · ·X im
m Y j0

0 · · ·Y jn
n such that

∑
s is = d

and
∑

s js = e.

Given such a bi-homogeneous polynomial F , we have

F (la0, . . . , lam, µb0, . . . , µbn) = ldµeF (a0, . . . , am, b0, . . . , bn) for all l, µ ∈ k,

and in particular the condition on a point ([a], [b]) ∈ Pm × Pn that F ([a], [b]) = 0 is
independent of representatives. We define

V Pm
k ×P

n
k (F ) = {([a], [b]) ∈ Pm × Pn | F (a,b) = 0}.

If G = G(. . . , Zi,j, . . . ) is a homogenous element in kP[W ] of degree d, then the
map θ in (2.6) sends G to F := θ(G) = G(. . . , XiYj, . . . ) in k[X0, . . . , Xm;Y0, . . . , Yn],
which is bihomogeneous of bidegree (d, d). Moreover, it is clear from the formula for

the isomorphism Σm,n : Pm × Pn
∼=−→ Sm,n that it induces an isomorphism

Σm,n : V Pm
k ×P

n
k (F ) ∼= V P

W (G).
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Proposition 2.51. Given a closed subset Z of Pmk × Pnk , we have that

Z = V Pm
k ×P

n
k (F1, . . . , Fl)

for some bi-homogenous polynomials F1, . . . , Fl.

Proof. Let Z ′ be the closed subset of Sm,n corresponding to Z under the isomor-
phism Σm,n of Theorem 2.49. Then Z ′ = V P

Sm,n
(G1, . . . , Gl) where for each s, Gs =

Gs(Zi,j) is a homogenous element of kP[Sm,n], say of degree ds. As noted above,
V P
Sm,n

(Gs) corresponds under Σm,n to V Pm
k ×P

n
k (Fs) where Fs = θ(Gs) = Gs(XiYj) ∈

[X0, . . . , Xm;Y0, . . . , Yn], which is bihomogeneous of bidegree (ds, ds). It follows that Z
is cut out by the bihomogenous polynomials F1, . . . , Fl.

Remark 2.52. There is a version of projective Nullstellensatz for Pmk ×Pnk . The irrelevant
ideal of Pmk × Pnk is the ideal B = (XiYj | 0 ≤ i ≤ m, 0 ≤ j ≤ n) that satisfies
V Pm

k ×P
n
k (B) = ∅.

2.6.2 The Veronese variety

Let N =
(
n+d
d

)
denote the number of monomials of degree d in k[X0, . . . , Xn]. For any n

and d, let F1, . . . , FN be a complete list of all the monomials of degree d in X0, . . . , Xn.

Definition 2.53. The d-thVeronese subring of k[X0, . . . , Xn] is the ring

k[X0, . . . , Xn](d) = {f ∈ k[X0, . . . , Xn] | deg(f) is divisible by d}. (2.7)

Thus F0, . . . , FN ∈ k[X0, . . . , Xn](d) and in fact they generate this ring as a k-algebra.

Example 2.54. If n = 1 then the list is Xd, Xd−1Y, . . . , Y d, so that N = d.
If n = 2 and d = 4, then we have X4, X3Y , X2Y 2, XY 3, Y 4, X3Z, X2Y Z, XY 2Z,

Y 3Z, X2Z2, XY Z2, Y 2Z2, XZ3, Y Z3, Z4 and N = 14.

By (2.4) the function νd : Pn → PN−1 given by

νd([a0 : · · · : an]) = [F1(a0, . . . , an) : · · · : FN(a0, . . . , an)]

is a regular map.

Definition 2.55. The Veronese map or d-uple embedding is the regular map

νd : Pn → PN−1 νd([a0 : · · · : an]) = [F1(a0, . . . , an) : · · · : FN(a0, . . . , an)]︸ ︷︷ ︸
all monomials of degree d

. (2.8)

The Veronese variety Vn,d = Im(νd) ⊆ PN−1
k is the image of the above map.

It is not clear at this point that the Veronese variety is indeed a projective variety,
but this is true and will be justified later (using the Closed Mapping Theorem). For
the rest of the section we take this fact for granted.
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Example 2.56. νn,1 is the identity map and so Vn,1 = Pn.

Example 2.57. V1,d =
{

[sd : sd−1t : sd−2t2 : · · · : s2td−2 : std−1 : td] | [s : t] ∈ P1
k

}
⊆ Pdk

is called the rational normal curve of degree d.

Note that monomials in n + 1 variables X0, . . . , Xn are indexed by tuples I =
(i0, . . . , in) ∈ Nn+1 where N = {0, 1, . . . }, where such an I corresponds to the monomial

XI := X i0
0 X

i1
1 · · ·X in

n .

Define |I| := ∑s is, so that the degree of XI is |I|.
With this notation, the d-uple embedding

νn,d : Pn → PN−1

is the map given by [a0 : · · · : an] 7→ [· · · : XI(a0, . . . , an) : · · · ] where I ranges over
tuples I ∈ Nn+1 with |I| = d. We should also specify an ordering on the I’s to make
νn,d a specific map — let’s say we order them lexicographically, so that (d, 0, . . . , 0)
comes first.

Let us write the coordinate functions of PN−1 as ZI for I ∈ Nn+1 with |I| = d, i.e.,

kP[PN−1] = k[{ZI | I ∈ Nn+1, |I| = d}].

Theorem 2.58. The Veronese variety Vn,d is isomorphic to Pn as projective varieties.

Proof. The map νn,d is a well-defined regular map since the XI ’s all have the same
degree and V P(XI | |I| = d) = ∅ since, e.g., Xd

0 , . . . , X
d
n, only vanish simultaneously at

the origin in An+1.
We will define a proposed inverse for νn,d. Consider the open sets

Ui = DVn,d
(Z{0,...,0,d,0,...,0})

where the d is in the i-th spot and define

ϕi,d : Ui → Pnk ϕi,d([aI ]) = [a{1,0,...,0,d−1,0,...,0} : · · · : a{0,0,...,0,d−1,0,...,1}]

that is, ϕi,d remembers only the coordinates indexed by tuples I where the i-th entry
of I is d− 1, exactly one other entry is 1 and all other entries are zero. We have

ϕi,d ◦ νn,d([x0 : · · · : xn]) = [x0x
d−1
i : · · · : xnxd−1

i ] = [x0 : · · · : xn] on Ui

which also shows that ϕi,d = ϕj,d on Ui ∩ Uj, so there is a well-defined map

ϕd : Vd → Pnk ϕd = ϕi,d on Ui

that is a left inverse to νi,d. Since νn.d is surjective it follows that it is in fact bijective
and ϕd is its inverse. We have shown that Vn,d and Pn are isomorphic as projective
varieties
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Consider the ideal of k[PN−1]

Q =
(
{ZIZJ − ZI′ZJ ′ | I, J, I ′, J ′ ∈ Nn+1, |I| = |J | = |I ′| = |J ′| = d, I + J = I ′ + J ′}

)
.

(2.9)
The formula for νn,d makes clear that its image is contained in V P(Q). In fact we have
that Vn,d = V P(I).

Theorem 2.59. The Veronese variety is defined by quadratic binomials as follows

Vn,d = V P ({ZIZI′ − ZJZJ ′ | I, J, I ′, J ′ ∈ Nn+1, |I| = |J | = |I ′| = |J ′| = d, I + I ′ = J + J ′}
)
.

The proof is omitted. A corollary of Theorem 2.58 gives a presentation of the
Veronese ring.

Corollary 2.60. There is a k-algebra isomorphism

k[X0, . . . , Xn](d) ∼= k[ZI | |I| = d]/Q ZI 7→ XI ,

where Q is the ideal in (2.9).

Proof. The map νn,d in (2.8) induces a map ν∗n,d : k[Vn,d] = k[ZI | |I| = d]/Q → k[Pnk ]

given by ν∗n,d(ZI) = XI . Since the monomials XI with |I| = d generate k[X0, . . . , Xn](d)

as a k-algebra, the image is k[X0, . . . , Xn](d). Since the ideal of relations between
monomials of degree d is IP(Vn, d), the fact that the map is injective follows from
Theorem 2.59.

Example 2.61. The defining ideal of the rational normal curve in Example 2.57 is

IP(V1,d) =

(
2× 2 minors of

[
Z0,d Z1,d−1 · · · Zd−1,1

Z1,d−1 Z2,d−2 · · · Zd,0

])
.

Example 2.62. The defining ideal of the Veronese surface V2,2 ⊆ P5
k is

IP(V2,2) =


2× 2 minors of



Z0,0,2 Z0,1,1 Z0,2,0

Z0,1,1 Z1,0,1 Z1,1,0

Z0,2,0 Z1,1,0 Z2,0,0




 .

We will use the following later on:

Lemma 2.63. Given a projective variety Z ⊆ Pn, there is an integer d such that
Z = V P(F1, . . . , Fl) for some homogeneous polynomial Fi each of which has degree d.

Given a projective variety Z ⊆ Pm × Pn, there is an integer d such that

Z = V P×P(G1, . . . , Gl)

for some bihomogeneous polynomials Gi each of which has bidegree (d, d).
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Proof. The first assertion is a homework problem.
For the second assertion, if we follow the proof of Proposition 2.51 starting with

Fi’s of degree d for some d (which is possible by what was just proved), then we arrive
at a list of bi-homogeneous polynomials of bi-degree (d, d).

One application of the Veronese embedding is to turn varieties of Pnk cut out by
degree d equations into varieties of PN−1

k cut out by linear equations, that is, linear
subspaces.

Lemma 2.64. If C ⊆ Pn is a projective variety, then for some integer d we have

C = ν−1
n,d(L)

where νn,d : Pn → PN is the d-uple embedding and L ⊆ PN−1 is a projective variety
such that IP(L) is generated by linear homogeneous polynomials.

Proof. Homework problem.

Friday, February 21

2.6.3 Grassmannian varieties

Recall that we defined projective space as the quotient

Pnk =
An+1 \ {0}

k∗
. (2.10)

It can also be viewed as the set of lines through the origin in An+1.
Grassmannians are generalizations of the projective space, where instead of lines

through the origin we consider higher-dimensional linear spaces.

Definition 2.65. The Grassmannian Gr(d, n) is the set of d-dimensional subspaces of
kn.

Example 2.66. Gr(1, n+ 1) = Pnk since projective space can be identified with the set
of all lines in kn+1 = An+1

k .

An equivalent definition that parallels (2.10):

Definition 2.67. The Grassmannian Gr(d, n) is also defined as

Gr(d, n) = {A ∈Md,n(k) | rank(A) = d}/ ∼

where A ∼ B if and only if there exists C ∈ GLd(k) so that A = CB.
I will write [A] for the equivalence class of A with respect to the equivalence relation
∼.
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Th see that the two definitions are equivalent, notice that any matrix A ∈Md,n(k)
with rank(A) = d gives rise to a d-dimensional vector space of kn known as the row
space of A. Moreover, two matrices A,B have the same row space if and only if A = CB
for some C ∈ GLd(k), where C is the change of basis matrix converting between the
rows of A and the rows of B as bases of the same row space.

Every element [A] ∈ Gr(d, n) has a canonical representative, namely the reduced
row echelon form of A. Thus [A] = [RREF (A)] in Gr(d, n). Notice for later that if A
is d × n and it has d pivots then RREF(A) has exactly d(n − d) arbitrary entries in
non-pivot columns and all the other entries in pivot columns are determined. For each
list of indices 1 ≤ i1 < i2 < . . . < id ≤ n we define a distinguished set of Gr(d, n) by

Ui1,i2,...,id = {[A] ∈ Gr(d, n) | RREF (A) has pivots in columns i1, i2, . . . , id}.

We now proceed to show that Grassmannians are projective varieties by construct-
ing a map that embeds Gr(d, n) in projective space and identifying Gr(d, n) with its
image through this map.

Definition 2.68. Given a matrix A ∈ Md,n(k), write ∆i1,...,id(A) for the determinant
of the d × d submatrix formed by columns i1, . . . , id of A for some list of indices
1 ≤ i1 < i2 < . . . < id ≤ n. Notice there are

(
n
d

)
such tuples of indices.

The Plücker map ∆ : Gr(d, n)→ P(n
d)−1 is defined by

∆([A]) = [∆1,2,...,d(A) : · · · : ∆i1,...,id(A) : · · · : ∆n−d+1,...,n(A)]︸ ︷︷ ︸
all the d×d minors of A

.

Observe that the Plücker map is well-defined: it does not yield [0 : · · · : 0] since for
[A] ∈ Gr(n, d) we have rank(A) = d so at least one of the d × d minors of A is non
zero. Moreover, if A = CB, then for all tuples of indices 1 ≤ i1 < i2 < . . . < id ≤ n we
have ∆i1,...,id(A) = det(C)∆i1,...,id(B), which yields ∆([A]) = ∆([B]).

Example 2.69. Let A =

(
1 0 a b
0 1 c d

)
. The image of [A] via the Plücker map is

∆([A]) = [1 : c : d : −a : −b : ad− bc].

It satisfies ∆12(A)∆34(A)−∆13(A)∆24(A)+∆14(A)∆23(A) = 0. This is called a Plücker
relation.

There is a more conceptual way to obtain the Plücker map, which we now define.
First, using the standard basis e1, e2, . . . , en of kn define a vector space

d∧
kn = Spank{ei1 ∧ ei2 ∧ · · · ∧ eid | 1 ≤ i1 < i2 < . . . < id ≤ n}

where if u and v are in the same spot and the · · · are the same

· · · ∧ u ∧ · · ·+ · · · ∧ v ∧ · · · = · · · ∧ (u+ v) ∧ · · · ,
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for any permutation σ on d elements we have

v1 ∧ · · · ∧ vd = (−1)sgn(σ)vσ(1) ∧ · · · ∧ vσ(d)

and for any v ∈ kn
· · · ∧ v ∧ · · · ∧ v ∧ · · · = 0.

Definition 2.70. Given a d-dimensional subspace V of kn with basis v1, . . . , vd the
Plücker map is given by

∆(L) = [v1 ∧ · · · ∧ vd],
where [v1 ∧ · · · ∧ vd] denotes the vector of coefficients of v1 ∧ · · · ∧ vd with respect to
the standard basis of

∧d kn consisting of ei1 ∧ ei2 ∧ · · · ∧ eid with 1 ≤ i1 < i2 < . . . < id.

Example 2.71. Let A =

(
1 0 a b
0 1 c d

)
be the same as in the previous example and

let V be the row space of A. The image of V via the Plücker map is

∆(V ) = (e1 + ae3 + be4) ∧ (e2 + ce3 + de4)

= e1 ∧ e2 + ce1 ∧ e3 + de1 ∧ e4 − ae2 ∧ e3 − be2 ∧ e4 + (ad− bc)e3 ∧ e4.

With all this we have:

Theorem 2.72. 1. The image G of the Plücker map consists of those elements of∧d kn that are totally decomposable, that is, can be written as v1 ∧ · · · ∧ vd for
some v1, . . . , vd ∈ kn.

2. The Plücker map is a bijection onto its image.

3. The image of Ui1,...,id through the Plücker map is isomorphic to Ad(n−d).

4. The image G of the Plücker map is a projective variety with defining equations

G = V P (ZS∪{a,b}ZS∪{c,d} − ZS∪{a,c}ZS∪{b,d} + ZS∪{a,d}ZS∪{b,c} | 1 ≤ a < b < c < d ≤ n,

S ⊆ [n] \ {a, b, c, d}, |S| = d− 2) .

Proof. I will just sketch (3) and partially (4).
For (3), fix an element [A] ∈ Ui1,...,id . We may assume A is in RREF and so it

has d(n− d) entries in non-pivot columns. Each of these entries is equal to one of the
d× d minors of A, thus it appears in ∆([A]). Ignoring the other entries of ∆([A]) this

gives a map to Ad(n−d)
k . The inverse map takes an element of Ad(n−d)

k and inserts its
coordinates into an RREF matrix to produce an element of Gr(d, n).

For (4), I will show that G is a projective variety but not necessarily that it has
the claimed defining equations. For w ∈ ∧d kn consider the linear map fw : kn →∧d+1 kn, fw(v) = w ∧ v. Then w is in G if and only if w is totally decomposable as
w = v1 ∧ · · · ∧ vd if and only if Ker(fw) = Spank{v1, . . . , vd} is d-dimensional if and
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only if the rank of fw is n− d if and only if all (n− d+ 1)× (n− d+ 1) minors of the
matrix representing the map fw are equal to zero. These are polynomial equations in
the coefficients of w in terms of the standard basis of

∧d kn (see the following example),
and G is determined by their vanishing.

Example 2.73. Consider d = 2, n = 4. We will set up the map fw in the previous
proof. Let

w = ∆12e1 ∧ e2 + ∆13e1 ∧ e3 + ∆14e1 ∧ e4 + ∆23e2 ∧ e3 + ∆24e2 ∧ e4 + ∆34e3 ∧ e4.

Listing fw(e1), fw(e2), fw(e3), and fw(e4) as columns vectors written in the basis e1 ∧
e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4, the matrix of fw is




∆23 −∆13 ∆12 0
∆24 −∆14 0 ∆12

∆34 0 −∆14 ∆13

0 ∆34 −∆24 ∆23




and the proof above shows that Gr(2, 4) is cut out by the 3 × 3 minors of the above
matrix which are all of the form

±∆ij(∆12∆34 −∆13∆24 + ∆14∆23).

So we see that

Gr(2, 4) = VP(Zij(Z12Z34−Z13Z24+Z14Z23) | 1 ≤ i < j ≤ 4) = V P(Z12Z34−Z13Z24+Z14Z23).

Monday, February 24

2.7 Quasi-projective varieties

We have already discussed affine varieties and projective varieties. We now generalize
what we mean by a “variety”.

Definition 2.74. Define a
• classical affine variety to be a Zariski closed set X = V A(I) ⊆ An

k for some ideal
I of k[x1, . . . , xn];

• projective variety to be a Zariski closed set X = V P(I) ⊆ Pnk for some homoge-
neous ideal I of k[X0, . . . , Xn];

• quasi-affine variety to be a Zariski open set U of a classical affine variety X ⊆ An
k ;

• quasi-projective variety to be a Zariski open set U of a projective variety X ⊆ Pnk .

Definition 2.75. For a quasi-projective variety X, a regular map f : X → Pmk is
defined in the same was as for projective varieties; see Definition 2.35.

For X, Y quasi-projective varieties, a regular map or morphism f : X → Y is a
regular map f : X → Pmk whose image lands in Y . An isomorphism between X and Y
is a regular map which has a regular map for its inverse. If an isomorphism between
X and Y exists, then X and Y are called isomorphic.
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From now on we re-define what we means that a set X is a certain type of variety
(affine/projective/quasi-affine) to mean that X is a quasi-projective variety which is
isomorphic to an affine/projective/quasi-affine variety Y .

Example 2.76. An is affine, quasi-afine, quasi-projective, but not projective. The
first two are clear. It is quasi-projective because Ank

∼= U0 ⊆ Pnk . To see that it’s not
projective see Example 2.98.

Example 2.77. k∗ = A1
k \ {0} is affine, quasi-affine, and quasi-projective, but it is

not projective (we’ll see this later). It’s quasi-affine because it’s open in A1
k. It is

quasi-projective because A1
k \ {0} ∼= P1 \ {0,∞}. It is affine because it is isomorphic

to V (xy − 1) ⊆ A2
k.

Exercise 2.78. Prove that all types of varieties, i.e., classical affine/projective/quasi-
affine are quasi-projective.

An important result.

Theorem 2.79 (Quasi-projective varieties are locally affine). If X ⊆ Pnk is a quasi-
projective variety, for every a ∈ X there is an open sub-set U of X such that a ∈ U
and U is isomorphic to a classic affine variety.

Proof. Without loss of generality, we may assume a ∈ X0 = X ∩ U0
∼= X ∩ An

k . Then
X0 is Zariski open in X0 ⊆ An

k . If X0 = X0 then we are done by setting U = X0. So
assume ∅ 6= X0 \ X0 and pick 0 6= f ∈ k[X0] so that f(a) 6= 0 and set U = DX0

(f).
Observe that a ∈ U and U is open in X0, hence also in X.

In An+1
k with coordinate ring k[An+1

k ] = k[t1, . . . , tn+1], set

H = V A(tn+1f − 1) and Y = (X0 × A1
k) ∩H.

Observe that Y is a classical affine variety. We’ll show that U ∼= Y . Indeed, consider
the maps g : U → Y, f(x) = (x, 1/f(x)) and h : Y → U, h(x, tn+1) = x. They are
clearly inverse maps and they are regular maps of quasi-projective varieties.

The upshot of Theorem 2.79 is twofold:
• whenever we want to check a property of a quasi-projective variety X that is

local, we can assume that X is a classical affine variety
• a regular function on a quasi-projective variety X can be thought of an open

neighborhood of a as an element of OX0
(D(f)) = k[X0][1/f ] for X0, f as in the

proof of the Theorem.

2.7.1 Products of quasi-projective varieties

Definition 2.80. If X and Y are varieties, their product, if it exists, is a variety X×Y
equipped with morphisms π1 : X × Y → X and π2 : X × Y → Y that is “universal”
among all such diagrams — i.e., if T is any variety and f : T → X and g : T → Y are
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morphisms, there exists a unique morphism α : T → X × Y causing the evident two
triangles to commute: π1 ◦ α = f and π2 ◦ α = g.

T
g

**

f

��

∃!α

##
X × Y π2 //

π1

��

Y

X

Example 2.81. For instance, suppose X ⊆ Am and Y ⊆ An are two classical affine
varieties. Then we may form the subset X×Y of Am+n by identifying Am+n with Am×
An in the evident way. Moreover, if k[X] = k[x1, . . . , xm]/I and k[Y ] = k[y1, . . . , yn]/J
for radical ideals I and J , then

k[X × Y ] = k[x1, . . . , xm, y1, . . . , yn]/L

where L is the smallest ideal of k[x1, . . . , xm, y1, . . . , yn] containing I and J . (The
hardest part in proving this is that L is radical.) Another way of stating this is that
k[X × Y ] ∼= k[X]⊗k k[Y ] (see the homework).

Theorem 2.82. Every pair of quasi-projective varieties has a product.

Proof. We will just sketch the construction, and we won’t verify it works: suppose
X ⊆ Pmk and Y ⊆ Pnk are quasi-projective varieties. Recall that Σm,n : X × Y → PN

where N = (m + 1)(n + 1) − 1 denotes the Segre map and that this map is injective.
Then Σm,n : X×Y → Σm,n(X×Y ) is a bijection and one can show that Σm,n(X×Y ) is
a quasi-projective variety. Identifying X ×Y with Σm,n(X ×Y ) yields that the former
is quasi-projective.

Wednesday, February 26

2.8 The closed mapping theorem

2.8.1 Separated Varieties.

To motivate the following definition, recall that a topological space T is Hausdorff if
and only if the subset ∆(T ) = {(t, t) | t ∈ T} of the product space T × T , equipped
with the product topology, is a closed subset.

Definition 2.83. A variety X is separated if ∆(X) = {(x, x) | x ∈ X} is closed subset
of the product variety X ×X with respect to the Zariski topology.
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Example 2.84. Set k[A2n] = k[x1, . . . , xny1, . . . , yn]. For any positive integer n, An
k is

separated since its diaginal is a closed set according to the description

∆(An
k) = {(a,b) | a,b ∈ An, a = b} = V A(x1 − y1, . . . , xn − yn).

Example 2.85. Set k[Pn × Pn] = k[X0, . . . , Xn, Y0, . . . , Yn]. The diagonal is given by

∆(Pnk) = {([a], [b]) | [a], [b] ∈ Pn, [a] = [b]} = V P
(

2× 2 minors of

[
X0 X1 · · · Xn

Y0 Y1 · · · Yn

])
.

Indeed, a pair of points [a0 : · · · : an] and [b0 : · · · : bn] in Pn are the same if and only
if the 2× (n + 1) matrix they determine has rank one. Note that the 2× 2 minors of
the above matrix are bihomogeneous of bidegree (1, 1).

An alternative proof: Under the isomorphism Pn × Pn ∼= W , where W ⊆ Pn2+2n is
the Segre variety denotes Sn,n in Definition 2.46. The diagonal subset ∆(Pn) corre-
sponds with the set cut out by the collection of homogenous polynomials Zi,j − Zj,i in
k[Pn2+2n] = k[Zi,j | 1 ≤ i, j ≤ n], and hence is closed in W .

We can generalize these examples as follows.

Proposition 2.86. (1) All affine varieties are separated.
(2) Any open or closed subset of a separated variety is again a separated variety.
(3) All quasi-affine varieties are separated.
(4) All quasi-projective varieties are separated.

Proof. (1) Set k[A2n] = k[x1, . . . , xny1, . . . , yn]. If X ⊆ An is a classical affine variety,
say

X = V A(f1(x1, · · · , xn), . . . , fp(x1, . . . , xn)),

then X ×X ⊆ A2n is the closed set given by

X ×X = VA(f1(x1, . . . , xn), . . . , fp(x1, . . . , xn), f1(y1, . . . , yn), . . . , fp(y1, . . . , yn),

Since
∆(X) = (X ×X) ∩ ∆(An

k)

and we have seem in Example 2.83 that ∆(An
k) is closed, the conclusion follows.

(2) If Y is an open or closed subset of a separated variety X, then ∆(Y ) = Y ×
Y ∩∆(X), which is closed in Y × Y since ∆(X) is closed in X ×X.

(3) and (4) Follow from (2) and Example 2.83 or Example 2.84, respectively.

So, every variety we care deeply about is separated. But non-separated spaces do exist:

Example 2.87 (Line with a double point). Let X be the topological space obtained
from gluing one copy of A1 to another copy of A1 by identifying the open subset U0 of
the first with the open subset U0 of the second using the identity map. This space X
is not separated.
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2.8.2 The graph of a morphism.

Suppose f : X → Y is a morphism of quasi-projective. varieties. By the universal
mapping property of products, we obtain a morphism of quasi-projective varieties

j : X → X × Y, j = (idX , f) i.e., j(x) = (x, f(x)).

such that π1 ◦ j = idX and π2 ◦ j = f .

Definition 2.88. The image of j is known as the graph of f and is written as Γf

Γf = {(x, f(x) | x ∈ X}.

Proposition 2.89. If Y is separated, then Γf is a closed subvariety of X × Y and the

morphism j induces an isomorphism X ∼= Γf and f factors as X
∼=−→ Γf

π2−→ Y .

Proof. We show Im(j) is closed. Consider the morphism

g = f × idY : X × Y → Y × Y

and observe that Γf = j(X) = g−1(∆(Y )). Since we assume Y is separated, ∆(Y ) is
closed and hence g−1(∆(Y )) = j(X) = Γf is closed. The morphism j is one-to-one

since π1 is a left inverse of it. It follows j : X
∼=−→ Γf is an isomorphism, since the

inverse π1 is a morphism.

Remark 2.90. When Y is not necessarily separated, it can be shown that the graph of
f is an open subset of a closed subset of X × Y , and hence is still a quasi-projective
variety.

Exercise 2.91. Show that the assumption that Y is separated in Proposition 2.89 is
necessary.

2.8.3 The Closed Mapping Theorem

In this section we prove that various maps are closed. Recall that a continuous function
f : X → Y between two topological spaces X and Y is called closed if f(C) is closed
in Y for every closed subset C of X.

Theorem 2.92 (Closed Mapping Theorem). If X ⊆ Pmk is a projective variety, Y is
quasi-projective, and f : X → Y is a regular map, then f is closed. In particular,
Im(f) is a closed subset of Y .

This helps show that various sets we have encountered are projective varieties.

Example 2.93. For each n and d, the Veronese variety Vn,d in Definition 2.55 is a
projective variety because it is the image of a regular map νn,d : Pnk → PN−1 in (2.8).
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Recall from Proposition 2.89 that a regular map f : X → Y factors as X
∼=−→ Γf

π2−→ Y .
Since homeomorphisms are closed, and compositions of closed maps are closed, to prove
that f is closed it suffices to prove that the projection π2 : X × Y → Y is closed.

Theorem 2.94 (Projective varieties are complete). If X ⊆ Pmk is a projective variety
and Y is quasi-projective variety then the regular map π2 : X × Y → Y is closed.

We will first show this for the special case X = Pmk , Y = Pnk .

Friday, February 28

Lemma 2.95. For all m and n, the projection map π2 : Pm × Pn → Pn is closed (for
the Zariski topologies).

Proof. Let Z be any closed subset of Pm×Pn. Then Z = V P×P(F1, . . . , Fl) where each

Fi( ~X, ~Y ) is bi-homogenous element of k[Pm × Pn] = k[X0, . . . , Xm;Y0, . . . , Yn]. Then

π2(Z) = {[b] ∈ Pn | ∃[a] ∈ Pmk such that F1(a,b) = · · · = Fl(a,b) = 0}
=

{
[b] ∈ Pn | ∅ 6= V P(F1(X0, . . . , Xm,b), . . . , Fl(X0, . . . , Xm,b)) ⊆ Pm

}
.

We need to show π2(Z) is the common zero locus of some homogenous polynomials.

Denote ~Y = Y0, . . . , Yn. To gain some intuition, let us first prove this when each Fi
is bi-homogenous of bi-degree (1, di) for some di — that is

Fi = Gi,0(~Y )X0 +Gi,1(~Y )X1 + · · ·+Gi,m(~Y )Xm

for some Gi,j(~Y )’s that are homogenous of degree di. Let G(~Y ) be the (n+1)× (m+1)

matrix of polynomials (Gi,j(~Y ))i,j, and for a point [b] ∈ Pn, let G([b]) be the (n +
1) × (m + 1) matrix G([b]) := (Gi,j(b))i,j. (This matrix is only well-defined up to a
non-zero scalar, but this won’t matter in the proof.) Then [b] ∈ π2(Z) if and only if
the matrix equation

G([b]) ·




X0

X1
...
Xm


 = ~0

has a non-zero solution iff the matrix G(b) has rank strictly less than m + 1 iff the
(m + 1) × (m + 1) minors of G(b) are all 0. (Note that each of these conditions is
unchanged upon scaling a matrix by a non-zero scalar.) In other words,

π2(Z) = V P
(

the (m+ 1)× (m+ 1) minors of G(~Y )
)
.

The minors are homogeneous polynomials, since for each row of G(~Y ) each entry has
the same degree. This proves π2(Z) is closed in Pnk in our special case.
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For the general case, by Lemma 2.63, we may assume each Fi is bi-homogenous of
the same bidegree (d, e) for a fixed d and e. (We can even arrange so that d = e.)

Denote Fi(X0, . . . , Xm,b) = fi( ~X). We have

∅ = V P(f1( ~X), . . . , fl( ~X))

⇐⇒ k[X0, . . . , Xm]d′ ⊆ (f1( ~X), . . . , fl( ~X)) for some d′ ≥ d by Prop. 2.24(3)

⇐⇒ k[X0, . . . , Xm]d′ = (f1( ~X), . . . , fl( ~X))d′

⇐⇒ Fd′ : (k[X0, . . . , Xm]d−d′)
l → k[X0, . . . , Xm]d′ , Fd′(h1, . . . hl) =

∑l
i=1 hifi

is surrjective. Denote Md′ the matrix of the linear transformation Fd′ with respect
to some chosen bases. The entries of Md′ are the coefficients of the polynomials fi,
which are polynomials in the entries of b. We write Md′(~Y ) for the matrix Md′ with bi
replaced by Yi. Then

Fd′ is surjective ⇐⇒ rank(Md′) =

(
m+ d′

d′

)
.

Taking contrapositive of all the work above we have proven

π2(Z) =
{

[b] ∈ Pmk | ∅ 6= V P(f1( ~X), . . . , fl( ~X))
}

=
⋂
d′≥d V

P
((

m+d′

d′

)
×
(
m+d′

d′

)
minors of Md′(~Y )

)
.

The set above is closed as it is an intersection of closed sets.

We now return to Theorem 2.94.

Proof of Theorem 2.94. We first show the case X = Pm and Y arbitrary.
If Y = Pn then this is the content of Lemma 2.95.
If Y is a projective variety (i.e., a closed subset of Pn for some n), then this holds

since Pm × Y is closed in Pm × Pn and Pm × Pn → Pn is closed.
Suppose Y is an affine variety. Then there is a projective variety Z such that Y is

an open subset of Z. (If Y ⊆ An is a classical affine variety, then we may take Z to
be the closure of Y in Pn where we regard An as an open subset of Pn in any of the
standard ways.) Then π2 : Pm × Z → Z is a closed mapping by what we have already
proven. For any closed subset C of Pm × Y , let C be its closure in Pm × Z. Since
C ∩ (Pm × Y ) = C it follows that

π2(C) ∩ Y = π2(C ∩ (Pm × Y )) = π2(C),

and hence that π2(C) is closed in Y .
Finally let Y be a quasi-projective variety. Then Y = U1 ∪ · · · ∪ Um for open sub-

varieties Ui of Y . Recall the property of a subset S of a topological space T being
closed is a “local property”; i.e., if T =

⋃
Uj for open subsets Uj of T and S ∩ Uj is
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closed in Uj for all j, then S is closed in T . With that in mind, given a closed subset
C of Pm × Y , we have that π2(C) is closed in Y iff π2(C) ∩ Ui is closed in Ui for all i
iff π2(C ∩ (Pm × Ui)) is closed in Ui for all i, and the latter holds since Ui is affine.

We have proven the clain for X = Pm. Finally, if X is any projective variety, then
X is a closed subvariety of Pm and so the claim follows since X × Y is a closed sub-
variety of Pm × Y , and hence C × Y is a closed sub-variety of Pm × Y for any closed
subset C of X.

The Closed Mapping Theorem has consequences on regular functions.

Corollary 2.96. If X is a connected projective variety, then OX(X) = k.

Proof. The assertion is equivalent to the statement that every morphism of varieties
of the form f : X → A1

k is constant. View A1 as an open sub-variety of P1 so that we
may regard f as a morphism from X to P1

k. Since P1
k is separated and X is complete,

f(X) is closed in P1
k by Theorem 2.92. But it is not equal to all of P1

k and so f(X)
must be a finite set of points. Since X is connected, f(X) must be a single point.
(If f(X) contained two points P and Q, then f−1(Q) and f−1(P ) would be disjoint,
open-and-closed subsets of X, contrary to X being connected.)

2.8.4 Complete varieties

Just as with the notion of “separated”, the concept of “complete” is motivated by a
topological one. Also “recall” that:

A topological space X is compact if and only if for all topological spaces Y
the projection map π : X × Y → Y is a closed mapping, where X × Y is
endowed with the product topology.

I’ll also remind you that a compact subset of a Hausdorff space is closed, and from
this one deduces that if f : X → Y is continuous, X is compact, and Y is Hausdorff,
then f(X) is closed in Y .

Definition 2.97. A variety X is called complete (or sometimes “proper”) if it is se-
parated and for all varieties Y the morphism of varieties π : X × Y → Y given by
projection is a closed mapping (for the Zariski topologies).

Example 2.98. X = A1 is not complete: Take Y = A1 and C = V (xy−1) ⊆ X×Y =
A2. Then C is closed but π(C) = {a ∈ A1 | a 6= 0} is not.

This proves that A1 is not projective, as projective varieties are complete.

Exercise 2.99. Prove that a closed sub-variety Z of a complete variety X is complete.

To illustrate the value of this notion, let me state and prove a generalization of
Theorem 2.92:
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Proposition 2.100 (Closed Mapping Theorem – General Version). If X is a complete
variety, then for every morphism f : X → Y of varieties such that Y is separated, the
image of f in Y is a closed sub-variety.

Proof. Recall that f factors as

X
∼=−→ Γf

π2−→ Y

and, since we assume Y is separated, Γf is a closed sub-variety of X × Y . Since we
assume X is complete, π2(Γf ) = Im(f) is a closed subset of Y . The second assertion
holds since closed sub-varieties of complete varieties are complete.
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Chapter 3

Dimension Theory

Monday, March 3

3.1 Dimension of affine varieties

Definition 3.1. The dimension of a noetherian topological space X, is

dim(X) = sup{n | ∅ ( Y0 ( Y1 ( · · · ( Yn ⊆ X, Yi irreducible closed in X}.

The dimension of the empty set is −∞. It is possible that the dimension of a noetherian
space is infinite.

Definition 3.2. Given a closed irreducible subset Y of X, the codimension of Y in X,
written codimX(Y ) is he supremum over all n such that a choice of the form

codimX(Y ) = sup{n | Y = Y0 ( Y1 ( · · · ( Yn ⊆ X, Yi irreducible closed in X}.

When Y is reducible, one defines codimX(Y ) to be the minimum value of codimX(Y ′)
where Y ′ ranges over the irreducible components of Y .

Remark 3.3. Topologize N by declaring a subset to be closed if and only if it is of the
form {0, 1, . . . , n} for some −1 ≤ n ≤ ∞. Then N is a noetherian space but has infinite
dimension. There exist noetherian commutative rings R such that dim Spec(R) =∞.
(This cannot occur for local rings nor for rings that are finitely generated as k-algebras.)

Remark 3.4. Observe that every maximal chain of irreducible closed subsets (i.e., every
chain that cannot be made longer and inserting new terms) of X has Yn equal to an
irreducible component of X and has Y0 equal to a single point. In particular,

dim(X) = max{dim(Y ) | Y is an irreducible component of X}

and
dim(X) = max{codimX(P ) | P is any point of X}.
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Example 3.5. Let X = V (xy, xz), the union of the x-axis and the yz-plane. The
dimension of X is two. It is clearly at least two, since we have the chain with Y0

being any point on the yz-plane, Y1 being any line in this plane and containing this
point, and Y2 being the whole plane. It is harder to see that it is at most two. This
is an example of a variety that fails to be “equi-dimensional” — the variety has two
irreducible components, but they have different dimensions.

Let Y = V (x) ⊆ X, the yz-plane. Then codimX(Y ) = 0 since the only closed
subsets strictly between Y and X are given by Y together with a finite set of points
on the line.

Let Z = V (y, z), the x-axis. Then codimX(Z) is also 0 by similar reasoning. Since
dim(Z) = 1, this is a bit counter-intuitive.

Let W = V (x, y, z). When codimX(W ) = 2. It’s at least two since we have the
chain W ( V (x, y) ( Y ⊆ X; it is less obvious, but true, that it is exactly two.

The following result follows from the fact that there is an order-reversing bijections
between primes ideals of k[X] and irreducible closed subsets of X:

Proposition 3.6. The dimension of an affine variety X is equal to the Krull dimension
of its coordinate ring k[X], in particular dim(X) is finite. The codimension of an irre-
ducible closed subset Y of X is the height of the corresponding prime ideal I(Y ) of k[X]
and the codimension of an arbitrary closed subset Y is the height of the corresponding
radical ideal I(Y ).

Since the Krull dimension of k[x1, . . . , xn] = n we have:

Corollary 3.7. The dimension of An
k is n.

Theorem 3.8 (Properties of dimension). Assume k is algebraically closed and X and
Y are irreducible affine k-varieties

1. We have dim(X × Y ) = dim(X) + dim(Y ).

2. If Y ⊆ X then dim(X) = dim(Y ) + codimX(Y ).

3. If f is a non-zero, non-unit element of k[X], then dimVX(f) = dim(X)− 1.

4. If f1, . . . , fr are elements of k[X], then dimVX(f1, . . . , fr) ≥ dim(X)− r.

Proof. (1) This can be shown using Noether normalization.
(2) This follows because k-algebra domains satisfy the catenary property: all max-

imal chaine of primes have the same length. It follows that

dim k[X] = dim
k[X]

I(Y )
+ ht I(Y )

dim k[X] = dim k[Y ] + ht I(Y )

dim(X) = dim(Y ) + codimX(Y ).
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(3) By Krull’s Principal Ideal Theorem ht((f)) ≤ 1. Since (0) ( (f) ( k[X] in fact
we have ht((f)) = 1, so by Proposition 3.25 every irreducible component of VX(f) has
codimension 1 in X. Equivalently, by (2), dimVX(f) = dim(X)− 1.

(4) By Krull’s Height Theorem ht((f1, . . . , fr)) ≤ r so by Proposition 3.25 some
irreducible component of VX((f1, . . . , fr)) has codimension ≤ r and therefore, by (2),
it has dimension ≥ dim(X)− r. Thus dimVX(f) ≥ dim(X)− r.
Remark 3.9. If f1, . . . , fr are elements of k[x1, . . . , xn] such that dimV A(f1, . . . , fr) =
n− r we say that V A(f1, . . . , fr) is a complete intersection.

We now turn to the dimension of quasi-affine varieties. We see below that if U is
quasi-affine, then dim(U) = dim(U).

Proposition 3.10. If U is a dense open set of an affine variety X, then dim(U) =
dim(X). In particular, dim(U) = dim(U).

Proof. Suppose that Y0 ( Y1 ( · · · ( Yn is a sequence of distinct closed irreducible
subsets of U . Let Zi be the Zariski closure of Yi in X for 0 ≤ i ≤ n. As Yi is closed in
U , we have Yi = U ∩W for some closed W in X, which means that Yi ⊆ W and thus
Zi ⊆ W as Zi is the smallest closed set of X that contains Yi. Then the containments

Yi = U ∩ Zi ⊆ U ∩W = Yi

ensure Zi ∩ U = Yi. Thus

Z0 ( Z1 ( · · · ( Zn (3.1)

is a sequence of distinct closed irreducible subsets of X, yielding dim(U) ≤ dim(X).
In particular, dim(U) is finite, so we can choose a maximal chain of Yi’s. Since the

chain is maximal, Y0 is a point and Yn = U . Now if W is an irreducible closed subset
of X such that the open subset W ∩U of W is nonempty, we then have that W ∩U is
dense in W . Indeed, W = W ∩ U ∪ (W ∩ (X \ U)) is a union of closed sets in W and
the latter is not equal to W provided W ∩ U 6= ∅, so it must be that W = W ∩ U .

In particular, if A ( B are irreducible closed subsets of X such that A∩U 6= ∅ and
A∩U = B ∩U , then we have that A = A ∩ U = B ∩ U = B. Thus we have that (3.1)
is a maximal chain in X, and hence by the catenary property dim(Y ) = dim(X).

Recall from Math 905 that ifR is a k-algebra domain then dim(R) = trdegk(Frac(R)).
Building upon this we show that dimension is a birational invariant.

Theorem 3.11. Let X and Y be irreducible affine varieties that are birational to each
other. Then dim(X) = dim(Y ).

Proof. By Corollary 1.98 a birational map X → Y induces an isomorphism of fraction
fields Frac(k[X]) = k(X) ∼= k(Y ) = Frac(k[Y ]). Thus

dim(X) = dim k[X] = trdegk(Frac(k[X])) = trdegk(Frac(k[Y ])) = dim k[Y ] = dim(Y ).

Wednesday, March 3
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3.2 Finite maps

We start by recalling Noether normalization.

Example 3.12. (Idea behind Noether normalization) Let R = k[x1, x2]/(x1x2− 1) be
the coordinate ring of the variety X = V (x1x2− 1) ⊂ A2

k. Then R is not integral (and
hence not module-finite) over A = k[x1]. We can see this from the figure below on the
left: the map induced by A ↪→ R is the projection onto the x1-axis. It can be seen
geometrically that this map does not satisfy the Lying Over property for the origin.

It is easy to change the situation however by a linear coordinate transformation:
if we set e. g. x1 = y2 + y1 and x2 = y2 − y1 then we can write R also as R′ =
k[y1, y2]/(y2

2−y2
1−1), and now R′ is integral, hence module-finite, over A′ = k[y1] since

the polynomial y2
2−y2

1−1 is monic in y2. Geometrically, the coordinate transformation
has tilted the algebraic set X as in the picture above on the right so that e. g. the
Lying Over property now obviously holds. Note that this is not special to the particular
transformation that we have chosen; in fact, almost any linear coordinate change would
have worked to achieve this goal.
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10. Noether Normalization and Hilbert’s Nullstellensatz

In the last chapter we have gained much understanding for integral and finite ring extensions. We
now want to prove an elementary but powerful theorem stating that every finitely generated algebra R
over a field K (so in particular every coordinate ring of a variety by Remark 1.31) is a finite extension
ring of a polynomial ring K[z1, . . . ,zr] — and hence of a very simple K-algebra that is easy to deal
with. Let us start by giving the geometric idea behind this so-called Noether Normalization theorem,
which is in fact very simple.

Example 10.1 (Idea of Noether Normalization). Let R = C[x1,x2]/(x1x2�1) be the coordinate ring
of the variety X = V (x1x2�1)⇢ A2

C as in Example 9.4 (b). We know already that R is not integral
(and hence not finite) over C[x1]; this is easily seen geometrically in the picture below on the left
since this map does not satisfy the Lying Over property for the origin as in Example 9.19.

R

C[y1]

finite
y2

2� y2
1�1 = 0

R

C[x1]

not finite
x1x2�1 = 0

coordinate
change

x1 = y2 + y1

x2 = y2� y1

It is easy to change this however by a linear coordinate transformation: if we set e. g. x1 = y2 +y1 and
x2 = y2�y1 then we can write R also as R = C[y1,y2]/(y2

2�y2
1�1), and this is now finite over C[y1]

by Proposition 9.5 since the polynomial y2
2� y2

1� 1 is monic in y2. Geometrically, the coordinate
transformation has tilted the space X as in the picture above on the right so that e. g. the Lying Over
property now obviously holds. Note that this is not special to the particular transformation that we
have chosen; in fact, “almost any” linear coordinate change would have worked to achieve this goal.

In terms of geometry, we are therefore looking for a change of coordinates so that a suitable coordi-
nate projection to some affine space Ar

K then corresponds to a finite ring extension of a polynomial
ring over K in r variables. Note that this number r can already be thought of as the “dimension” of
X (a concept that we will introduce in Chapter 11) as finite ring extensions correspond to surjective
geometric maps with finite fibers by Example 9.19, and thus should not change the dimension (we
will prove this in Lemma 11.8).

As we have seen above already, the strategy to achieve our goal is to find a suitable change of
coordinates so that the given relations among the variables become monic. The first thing we have
to do is therefore to prove that such a change of coordinates is always possible. It turns out that a
linear change of coordinates works in general only for infinite fields, whereas for arbitrary fields one
has to allow more general coordinate transformations.

18

Lemma 10.2. Let f 2 K[x1, . . . ,xn] be a non-zero polynomial over an infinite field K. Assume that
f is homogeneous, i. e. every monomial of f has the same degree (in the sense of Exercise 0.16).

Then there are a1, . . . ,an�1 2 K such that f (a1, . . . ,an�1,1) 6= 0.

Proof. We will prove the lemma by induction on n. The case n = 1 is trivial, since a homogeneous
polynomial in one variable is just a constant multiple of a monomial.

Recall from Math 905:

Theorem 3.13 (Noether Normalization). Let k be a field (not necessarily algebraically
closed), and R be a finitely generated k-algebra. Then, there are x1, . . . , xd ∈ R alge-
braically independent over K such that k[x1, . . . , xd] ↪→ R is module-finite.

(Projective Noether Normalization) Let k be an infinite field (this holds if k is alge-
braically closed), and R be a finitely generated standard-graded k-algebra with R0 = k.
Then there are homogeneous linear elements x1, . . . , xd ∈ R1 algebraically independent
over k such that R is module-finite over k[x1, . . . , xd].

The ring k[x1, . . . , xd] in Theorem 3.13 is called a Noether normalization for R.
We further have from Math 905

Theorem 3.14. If R is a finitely generated k-algebra, then dim(R) = d such that there
exists a Noether Normalization k[x1, . . . , xd] of R.

We now interpret the algebraic notion of a ring extension being finite geometrically,
in particular building a geometric framework for Noether normalization.
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Definition 3.15. Suppose that f : X → Y is a regular map of affine varieties. We say
that f is a finite map if f ∗ : k[Y ]→ k[X] is integral, that is, k[X] integral and thus a
finitely generated module over the subring f ∗(k[Y ]).

In the case when f is dominant and thus f ∗ is injective, it may sometimes be
convenient to abuse notation and identify k[Y ] with its isomorphic image f ∗(k[Y ])
viewing k[Y ] as a subring of k[X].

Example 3.16. The projection of the parabola V A(y2
2 − y2

1 − 1) onto the axis V A(y2)
in Example 3.12 is a finite map as it induces and integral extension of coordinate rings.

Theorem 3.17 (Properties of finite maps of affine varieties). Suppose that f : X → Y
is a finite map of affine varieties. Then

1. f−1(b) is a finite set for all b ∈ Y ,

2. if f is dominant then f is surjective,

3. f is closed.

Proof. (1) Let k[X] = k[x1, . . . , xn]/I(X). It suffices to show that each xi assumes only
finitely many values on f−1(b). Since k[X] is integral over f ∗(k[Y ]) each xi satisfies
an integral dependence relation

xmi + f ∗(ym−1)xm−1
i + · · ·+ f ∗(y0) = 0

for some y0, . . . , ym−1 ∈ k[Y ]. Suppose a ∈ f−1(b) and note this means f(a) = b and
hence f ∗(yi)(a) = yi(f(a)) = yi(b). Plugging a into the displayed equation gives

ami + bm−1a
m−1
i + · · ·+ b0 = 0.

Thus ai must be one of the ≤ m roots of the above equation. We have obtained that
each coordinate of a has finitely many possible values, thus f−1(b) is a finite set.

The proof of (2) and (3) is omitted.

Theorem 3.18. Suppose that X is an affine variety. Then there exists a dominant
finite map f : X → Ad

k for a unique d, namely d = dim(X).

Proof. There exist, by Theorem 3.13, x1, . . . , xd ∈ k[X] algebraically independent over
k such that k[x1, . . . , xd] ↪→ k[X] is module-finite and hence d = dim k[X] = dim(X).
Define a regular map f : X → Ad

k by f(a) = (x1(a), x2(a), . . . , xr(a)) for a ∈ X. Let
t1, . . . , td be the coordinate functions on Ad

k. Then f ∗ : k[Ad
k] → k[X] is the k-algebra

homomorphism defined by f ∗(ti) = xi for 1 ≤ i ≤ r. Thus f ∗ is injective and k[X] is
integral over k[Ad], and so f is dominant by Lemma 1.95 and finite.

Given a dominant finite map f : X → Ad
k, its pullback f ∗ : k[Ad

k] → k[X] is an
integral injection by Lemma 1.95 and thus d = dim k[Ad

k] = dim k[X] = dim(X).

Example 3.19. As the identity map Ad
k → Ad

k is a finite map, we conclude that
dimAd

k = d.
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Exercise 3.20. Show that if V ⊆ An
k is a k-vector subspace of kn, hence also an

affine variety then dimV = dimk V , that is, the dimension of V as a an affine variety
coincides with its dimension as a vector space.

Example 3.21. The converse of Theorem 3.17 (1) is false: the inclusion ι : A1
k \{0} →

A1
k has finite fibers, but the pullback ι∗ : k[A1

k] = k[x]→ k[A1
k \ {0}] = k[x, x−1] is not

module-finite.

Friday, March 7

3.3 Dimension of projective varieties

The topological Definition 3.1 of dimension and codimension is in effect for projective
varieties. We now want to find equivalent algebraic definitions.

Definition 3.22. Let X be an irreducible projective variety. The field of rational
functions on X is the set

k(X) =

{
F

G
| F,G ∈ k[X] homogeneous of the same degree , G 6= 0

}
.

Exercise 3.23. 1. Verify that k(X) is a proper subfield of the fraction field of k[X].

2. Verify that k(X) is the set of degree 0 elements in S−1k[X], where S is the set
of nonzero homogeneous elements in k[X]. We consider the degree of an element
a/b ∈ S−1k[X] to be deg(a)− deg(b).

Lemma 3.24. Let X be an irreducible projective variety, fix 0 6= t ∈ k[X]1 and let S
be the set of nonzero homogeneous elements in k[X]. Then there is an isomorphism of
graded rings

S−1k[X] ∼= k(X)[t, t−1] =
⊕

i∈Z

k(X)ti.

Proof. A homogeneous element of S−1k[X] degree d has an expression a/b, where
a ∈ k[X]i, b ∈ k[X]j and i− j = d. As in Exercise 3.23 we see that the set of elements
of degree zero in S−1k[X] is k(X). Moreover, we can rewrite

a

b
=
a

ti
· t

j

b
· ti−j

where the first two factors are in k(X), hence their product is too. This shows that
[S−1k[X]]d = k(X)td is the degree d part of k(X)[t, t−1], whence the claimed isomor-
phism follows.

Proposition 3.25. The dimension of an projective variety X is equal to all of the
following numbers (in particular dim(X) is finite)

64



1. the dimension of any dense open subset U of X

2. the transcendence degree of the faction field k(X) of the coordinate ring trdegk k(X),
provided X is irreducible

3. dim k[X]− 1

The codimension of a closed subset Y of X is the height of the corresponding radical
ideal I(Y ).

Proof. 1. The proof of (1) is identical to Proposition 3.10.
2. The proof will be added later.
3. By Lemma 3.24 S−1k[X] ∼= k(X)[t, t−1] =

⊕
i∈Z k(X)ti as graded rings. Thus

Frac(k[X]) = Frac(S−1k[X]) = Frac(k(X)[t, t−1]) = k(X)(t),

where k(X)(t) is the smallest sub-field of Frac(k[X]) that contains both k(X) and t.
Note that t is transcendental over k(X) since a degree 1 element cannot be a root of a
polynomial with degree zero coefficients. We conclude from (2) that

dim k[X] = trdegk(Frac(k[X])) = trdegk(k(X)(t)) = trdegk k(X) + 1 = dim(X) + 1.

Example 3.26. The dimension of Pnk is n since it has dense open sets Ui ∼= An
k .

Example 3.27. The dimension of Grassmannian varieties is given by dim Gr(d, n) =
d(n− d) by Proposition 3.25 part (1) and Theorem 2.72 part (3).

Example 3.28. Since the dimension is an isomorphism invariant, the dimension of the
Veronese variety is dimVn,d = dimPnk = n and that of the Segre variety is dim Σm,n =
dimPmk × Pnk = m+ n.

3.4 The theorem on dimension of fibers

In the previous section we have discussed the dimension of projective varieties. This
informs us what the dimension of quasi-projective varieties is as well, since if U is
an open set of some projective variety, then dim(U) = dimU where the latter is a
projective variety.

Definition 3.29. A real-valued function e : X → R from a topological space X is
upper-semicontinuous if for each m ∈ R, the following subset is open in X:

Um = {x ∈ X | e(x) < m}.
Equivalently, the following set is closed

Vm = {x ∈ X | e(x) ≥ m}.
Intuitively this means that the value of e can only increase “in the limit”.
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Example 3.30. The function e : R→ R, e(x) = bxc is upper-semicontinuous. Indeed
for m ∈ R we have

Um = {x ∈ X | e(x) < m} = (−∞, dme) is open.

We now state the theorem on dimension of fibers.

Theorem 3.31. Let X, Y be quasi-projective varieties and f : X → Y a dominant
regular map. For a ∈ X set Fa := f−1(f(a)), which we call the fiber of f(a), and
µ(a) = dima Fa which we define to be the maximum dimension of an irreducible com-
ponent of Fa containing a. For b ∈ Y we set λ(b) = dim f−1(b). Then

1. the function µ : X → R is upper-semicontinuous with respect to the Zariski
topology, i.e., for each m ∈ N the set

Vm = {a | µ(a) ≥ m} is closed in X.

2. if X is irreducible and µmin is the minimum value attained by µ then the set

U = {a ∈ X | µ(a) = µmin} is a dense open set of X

and µmin = dim(X)− dim(Y ).

3. if X, Y are projective varieties and f is surjective, then the function λ : Y → R
is upper-semicontinuous with respect to the Zariski topology, i.e., for each m ∈ N
the set

Zm = {b | λ(b) ≥ m} is closed in Y.

4. if X, Y are projective varieties, f is surjective, X is irreducible and λmin is the
minimum value attained by λ then λmin = dim(X)− dim(Y ).

Remark 3.32. We say that a general element (point) in an irreducible variety X satisfies
some property P if P (a) is true for all a in some nonempty, hence dense, open set of
X.

Thus Theorem 3.31 part (2) can be stated as the dimension of the fiber at a general
point is dimX − dimY .

Example 3.33. Consider the Segre surface Q = V P(XZ − YW ) ⊆ P3 which is iso-
morphic to P1×P1; see Example 2.11. Project from a point b of Q onto a plane. Then
we see that

Fa =

{
{a} if a,b are not on the same line in a ruling on Q

L if a,b are on the same line L in a ruling on Q.

Thus µmin = 0 and U = Q \ {L1, L2}, where L1, L2 are the two lines on Q through b.
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Belo is an important corollary of the theorem which uses the following exercise.

Exercise 3.34. If Y ⊆ X are both affine or both projective varieties then dim(Y ) ≤
dim(X) and dim(Y ) = dim(X) if and only if Y = X.

Corollary 3.35. Let X, Y be projective varieties with Y irreducible. Suppose for every
b ∈ Y the fiber f−1(b) is irreducible and all the fibers have the same dimension d.
Then X is irreducible.

Proof. LetX =
⋃n
i=1 Xi be the irreducible decomposition ofX and consider restrictions

fi = F |Xi
and functions λi : Y → R, λi(b) = dim f−1

i (b). Then since f−1(b) =⋃n
i=1 f

−1
i (b) with f−1(b) irreducible and f−1

i (b) closed, it follows that for every b ∈ Y
f−1(b) = f−1

i (b) for some i (here i depends on b). We aim to show that the same i
works for every b.

Since every function λi is upper semi-continuous by Theorem 3.31, we have that
for each i the set Yi := {b ∈ Y | λi(b) = d} is closed in Y and by the previous
considerations Y =

⋃n
i=1 Yi. Now Y is irreducible, so Y = Yj for some j. By the

definition of Yj this implies that all fibers of fj have dimension d and thus, by the
Exercise 3.34, since f−1

j (b) ⊆ f−1(b) and f−1(b) is irreducible it follows that f−1
j (b) =

f−1(b) for every b ∈ Y .
Finally this shows that X = f−1(Y ) = f−1

j (Y ) = Xj and hence that X is irre-
ducible.

The theorem on dimension of fibers is often applied in conjunction with incidence
correspondences. Vaguely, given varieties X, Y an incidence correspondence is a set of
the form

Σ = {(x, y) | x ∈ X, y ∈ Y, x is related to y in a specific manner} ⊆ X × Y.

Example 3.36 (The universal d-plane). Consider

Σ = {(a, V ) | [a] ∈ Pnk , V ∈ Gr(d+ 1, n+ 1), a ∈ V } ⊆ Pnk ×Gr(d+ 1, n+ 1).

Then Σ is a variety since the condition that a ∈ V is polynomial in the coordinates
of a and the Plücker coordinates of V . Namely, a ∈ V if and only if Spank〈a〉 + V is
a vector space of dimension d + 1 oif and only if the (d + 2) × (d + 2) minors of the
matrix obtained by stacking any matrix A whose rows are a basis of V and the row
vector a are equal to 0. But by Laplace expansion along the row a, these minors are
linear combinations of the entries of a with coefficients given by the (d + 1)× (d + 1)
minors of A, i.e., the Plucker coordinates of V .

We will prove below that for all n ≥ 0 the Grassmannian varieties Gr(d, n) are
irreducible by induction on d. The cases d = 0 is clear since the only 0-dimensional
vector space is the zero vector space. Thus Gr(d, n) is a point, which is irreducible.
Now suppose that for all n ≥ 0 we know that Gr(d, n) is irreducible. We will show
that Gr(d+ 1, n+ 1) is irreducible.

To compute the dimension of Σ we can proceed in two ways:
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• the fiber of the projection π1 : Σ → Pnk onto the first factor over any point
[a] ∈ Pnk is given by the set of d-dimensional subspaces of kn+1/ Spank〈a〉 and this
is isomorphic to Gr(d, n). By Corollary 3.35 and the inductive hypothesis, since
all fibers are the same and they are irreducible we conclude that Σ is irreducible.
By part (2) of Theorem 3.31 we deduce

dim Σ = dimPn + dim Gr(d, n) = n+ d(n− d).

• the fiber of the projection π2 : Σ → Gr(d + 1, n + 1) onto the second factor
over any point V ∈ Gr(d, n + 1) is given by V , which is a d + 1-dimensional
vector space, but d dimensional as a projective variety; specifically V ∼= Pdk. By
Theorem 3.31 (2) we have

dim Σ = dim Gr(d+ 1, n+ 1) + dimPdk = (d+ 1)(n− d) + d.

Notice that π2 is surjective and continuous. Since Gr(d+ 1, n+ 1) is the image of
an irreducible variety Σ through a continuous map, Gr(d+1, n+1) is irreducible.

We have thus proven:

Corollary 3.37. Grassmannians are irreducible projective varieties.

Wednesday, March 12
We now start the proof of Theorem 3.31. We will need the following lemma.

Lemma 3.38 (Points are set-theoretic complete intersections). Suppose that Y is an
quasi-projective variety of dimension d ≥ 1 and b ∈ Y . Then there exist an affine
neighborhood W in Y and f1, . . . , fd ∈ OY (W ) such that V A

W (f1, . . . , fd) = {b}.

Proof. Recall that OY (b) = k[W ]I(b) is a local ring with maximal ideal I(b)OY (b).
From Math 905 we know that in a local ring there exists a system of parameters
f1, . . . , fs such that s = dimOY (b) = dim k[W ] ≤ dimY and

√
(f1, . . . , fs) = I(b)OY (b).

We may assume s = d by adding redundant generators and we may assume f1, . . . , fs ∈
OY (W ) by clearing denominators. Now the claim follows since

√
(f1, . . . , fs) = I(b)

in OY (W ).

We next prove the following version of item (4) in Theorem 3.31.

Theorem 3.39. Let f : X → Y be a dominant regular map between irreducible quasi-
projective varieties. Then dimY ≤ dimX and:

1. Suppose that b ∈ Im(f) . Then dim f−1(b) ≥ dimX − dimY .

2. There exists a nonempty open subset U of Y such that dim f−1(b) = dimX −
dimY for all b ∈ U .
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Proof. 1. Applying Lemma 3.38 we can find an affine open subset W ⊆ Y and
g1, . . . , gd ∈ k[W ] so that V A

W (g1, . . . , gd) = {b} where d = dimY . Set f−1(W ) = U ,
which is a nonempty open set of X. Because X is irreducible U is dense which gives
dimX = dimU . Now we claim

f−1(b) = VU(f ∗(g1), . . . , f ∗(gd)).

Indeed,

a ∈ f−1(b) ⇐⇒ f(a) = b ⇐⇒ gi(f(a) = 0, ∀1 ≤ i ≤ d

⇐⇒ a ∈ VU(f ∗(g1), . . . , f ∗(gd)).

Krull’s height theorem shows codimU f
−1(b) = ht(f ∗(g1), . . . , f ∗(gd)) ≤ d = dimY .

Thus
dim f−1(b) = dimU − codimU f

−1(b) ≥ dimX − dimY.

2. We may again replace Y with an affine open subset W , X by an affine open
subset V ⊂ f−1(W ), and f by f |V : V → W . Since f is dominant, f determines

an inclusion f ∗ : k[W ] → k[V ], hence an inclusion k(W ) = k(Y )
f∗−→ k(X) = k(V ).

Consider the subring R of k(V ) generated by k(W ) and k[V ]. This is a domain which
is a finitely generated k(W )-algebra.

By Noether’s normalization Theorem 3.13 we have that there exist t1, . . . , tr in R
such that t1, . . . , tr are algebraically independent over k(W ) and R is integral over the
polynomial ring k(W )[t1, . . . , tr]. We may assume, after multiplying by an element of
k[W ], that t1, . . . , tr ∈ k[V ]. Since the fraction field of R is k(V ) we have

r = trdegk(W ) k(V ) = trdegk k(V )− trdegk k(W ) = dimX − dimY.

Now consider in k[V ] the subring f ∗(k[W ])[t1, . . . , tr] = k[W ] ⊗k k[t1, . . . , tr] =
k[W × Ar

k]. We have factorization of f of the form

V
ϕ−→ W × Ark

π−→ W, a 7→ (f(a), t1(a), . . . , tr(a)) 7→ f(a).

Note that π−1(b) = {b} × Ar
k
∼= Ar

k has dimension r and by the closed mapping
theorem ϕ(f−1(b)) is a subvariety of π−1(b), thus dimϕ(f−1(b)) ≤ r . We’ll show
that ϕ is a finite map when further restricted to an open set. This will yield that
dim f−1(b) = dimϕ(f−1(b)) ≤ r = dimX − dimY , finishing the proof.

Now to show that a restriction of ϕ is finite we proceed as follows: We have that k[V ]
is a finitely generated k-algebra, so it is a finitely generated f ∗(k[W ])[t1, . . . , tr]-algebra,
say generated by v1, . . . , vl as a f ∗(k[W ])[t1, . . . , tr]-algebra. Since R is integral over
f ∗(k(W ))[t1, . . . , tr] there exist polynomials Fi(x) in the indeterminate x, such that
Fi(vi) = 0 for 1 ≤ i ≤ l. The coefficients of the Fi belong to f ∗(k(W ))[t1, . . . , tr],
so they have denominators in f ∗(k[W ]). let g ∈ f ∗(k[W ]) be a common denominator
of all the coefficients in all the Fi’s and let h ∈ k[W ] be such that f ∗(h) = g.Then
k[V ][1/g] is integral over f ∗(k[W, 1/h])[t1, . . . , tr].
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Let U = DW (h). The considerations above show that the map ϕ : f−1(U)→ U×Ar
k

is finite, as desired. Then as described above it follows that for b ∈ U we have
dim f−1(b) ≤ r = dimX − dimY . In part (1) we have shown the opposite inequality
dim f−1(b) ≥ dimX − dimY . Thus dim f−1(b) = dimX − dimY for b ∈ U .

We return to the proof of Theorem 3.31 and prove a version of part (3).

Theorem 3.40. Let f : X → Y be a dominant regular map between irreducible quasi-
projective varieties. Then for every m ∈ R the following set is Zariski closed

Zm = {b ∈ Im(f) : dim f−1(b) ≥ m}.

Thus the map λ : Im(f)→ R, λ(b) = dim f−1(b) is upper-semicontinuous.

Proof. It suffices to prove the claim for m ∈ Z as Zm = Zdme.
Let λmin be the smallest value attained by λ. In Theorem 3.39 we showed λmin =

dimX−dimY and also that there is a nonempty open set U ⊆ Y such that λ(b) = λmin
for b ∈ U . We have however not shown that U is the set of all points where λ attains
its minimum value.

Claim 3.41. The set Umin = {b ∈ Y : dim f−1(b) = λmin} is Zariski open.

Set U0 = U and V0 = Y \U0. If λ takes values strictly greater than λmin on V0 then
we have Umin = U0 is open. Else applying Theorem 3.39 to the map f |f−1(V0) which
has the same λmin we can find an open set U1 ⊆ V0 on which λ(b) = λmin,∀b ∈ U1.
This process has to terminate else there is an infinite ascending chain of open sets

U0 ( U0 ∪ U1 ( U0 ∪ U1 ∪ U2 · · ·

which contradicts the Noetherianity of Y . Assuming this process terminates after n
steps we observe that Umin = U0 ∪ U1 ∪ · · · ∪ Un is open.

Furthermore the set Y \U = Vλmin+1 is closed. Now we can restrict f to f−1(Vµmin+1)
where λ has a new minimum value λ′ ≥ λmin+1 and repeat the argument above to find
an open set where the value λ′ is attained and a closed set Vλ′+1 where it is exceeded.
It follows that Vm = Vλmin+1 is closed for all λmin + 1 ≤ m ≤ λ′ and properly contains
Vλ′+1. By Noetherianity of Y eventually Vm = ∅ for large enough m.

Friday, March 14 (π Day)
Today we look at an extended example of applying the Theorem on Dimension of

Fibers. The goal is to decide roughly how many lines there are on a surface in three-
dimensional space, meaning are there no lines, finitely many lines or infinitely many
lines.

A surface S in P3
k is the set of zeros of a homogeneous polynomial F (X0, X1, X2, X3),

denoted S = V P(F ) and a line L in P3
k consists of the equivalence classes with respect

to ∼ of nonzero points in a 2-dimensional vector space V in k4 .
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Theorem 3.42. If S = V P(F ) is a surface in P3
k and char(k) 6= 2 then

S contains





inifinitely many lines if deg(F ) ≤ 2

finitely many lines if deg(F ) = 3 and F is general

no lines if deg(F ) ≥ 4 and F is general.

Proof. If F is linear S ∼= P2
k is a plane, thus contains infinitely many lines.

If F is quadratic, then S is projectively equivalent to a variety defined by a quadratic
polynomial in standard form

F (X0, X1, X2, X3) = c0X
2
0 + c1X

2
1 + c2X

2
2 + c3X

2
3 with each ci ∈ {0, 1}.

There are several possibilities:
• if three of the ci’s are zero then S is a plane and thus contains infinitely many

lines.
• if exactly two of the ci’s are zero then S ∼= V P(X2

0 +X2
1 ) = V P((X0 + iX1)(X0 −

iX1)) is the union of two planes and thus contains infinitely many lines.
• if only one ci is zero then S is a double cone and thus contains infinitely many

lines.
• if all ci = 1 then we can write

F (X0, X1, X2, X3) = (X0 + iX1)(X0− iX1) + (X2 + iX3)(X2− iX3) = XZ−YW
This yields that S is the Segre embedding of P1×P1, which contains two (infinite)
families of lines.

Now suppose that F (X0, X1, X2, X3) is a cubic (degree three) homogeneous poly-
nomial. Consider the incidence correspondence

Σ = {(L, F ) | L line, F homogeneous of degree 3, L ⊆ V P(F )} ⊆ Gr(2, 4)× P19,

where the set of lines L ⊆ P3
k is Gr(2, 4) and F =

∑
i0+i1+i2+i3=3 ci0i1i2i3X

i0
0 X

i1
1 X

i2
2 X

i3
3

is identified with the point [· · · : ci0i1i2i3 : · · · ] ∈ P19 (there are 20 monomials of degree
3 in 4 variables, so 20 coefficients in F which give a point in P19).

We start by analyzing the projection π1 : Σ→ Gr(2, 4) to the first factor. All lines
are projectively equivalent, so up to projective equivalence L = VP(X0, X1) and also
all fibers of π1 are projectively equivalent. The fiber

f−1(L) = {F | VP(X0, X1) ⊆ VP(F )} = {F | F ∈ (X0, X1)}.
The condition F ∈ (X0, X1) means that the coefficients of X3

2 , X
2
2X3, x2X

2
3 , X

3
3 in F

are all zeros and the other 16 coefficients are arbitrary (not all 0). So f−1(L) ∼= P15

has dimension 15.
Since every fiber is non-empty, the projection π1 is surjective. Since all fibers are

irreducible of the same dimension, Σ is irreducible by Corollaries 3.35 and 3.37 and by
the Theorem on Dimension of Fibers we compute

dim(Σ) = dim Gr(2, 4) + dim f−1(L) = 4 + 15 = 19.
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We continue by analyzing the projection π2 : Σ → P19 to the second factor. Note
that we don’t know whether π2 is surjective at this point (we don’t know if a cubic
surface must contain a line) but we can set Z = Im(π2), which is a projective variety
by the Closed Mapping Thorem and we can look at π2 : Σ→ Z.

Consider the line L0 = VP(X2, X3). It is contained in the open set U of Gr(2, 4)
given by the following matrices or corresponding lines

(
1 0 a b
0 1 c d

)
↔ L = {[s : t : as+ ct : bs+ dt] |, s, t ∈ k}.

Here L0 corresponds to a = b = c = d = 0. Observe that L0 is the only line in
this neighborhood that lies on V P(X2

0X2 +X2
1X3) (although it can be shown that this

surface in fact has infinitely many lines). Indeed, if

L = {[s : t : as+ ct : bs+ dt] |, s, t ∈ k} ⊆ V P(X2
0X2 +X2

1X3)

then we must have

s2(as+ ct) + t2(bs+ dt) = as3 + cs2t+ bst2 + dt3 = 0 for all s, t ∈ k.
This is only possible if a = b = c = d = 0, that is, L = L0. Thus we have shown
π−1

2 (X2
0X2 +X2

1X3) ∪ U = {L0}. We conclude that L0 is an isolated point in its fiber,
that is, it is its own connected component, and thus L0 is an irreducible component in
the fiber π−1

2 (X2
0X2 +X2

1X3). Thus the local dimension of π−1
2 (π2(L0)) at L0 is 0. By

the Theorem on Dimension of Fibers, this says that

19− dimZ = dim Σ− dimZ ≤ dimL0 π
−1
2 (π2(L0)) = 0.

Thus dimZ ≥ 19. But Z ⊆ P19 which is irreducible of dimP19
k = 19, so by homework

Z = P19
k and thus π2 is surjective. Moreover, the dimension of fibers theorem says that

there is an open subset O of P19 so that for F ∈ O we have

0 = dim π−1
2 (F ) = dim{L | L ⊆ V P(F )}.

Since the only 0-dimensional varieties are finite sets of points, it follows that a general
cubic surface contains finitely many lines.

Finally suppose that F (X0, X1, X2, X3) is a homogeneous polynomial of degree
d ≥ 4. Then we have an analogous incidence correspondece

Σ = {(L, F ) | L line, F homogeneous of degree d, L ⊆ V P(F )} ⊆ Gr(2, 4)× P(d+3
3 ),

Adapting the argument involving π1 from above gives

dim Σ = 4 +

(
d+ 3

3

)
− (d+ 1) <

(
d+ 3

3

)
.

Since dim Σ < dimP(d+3
3 ), by the Theorem on Dimension of Fibers the second projec-

tion cannot be dominant. Thus the complement of π2(Σ) is a nonempty open set W
and each F ∈ W has the property that V P(F ) contains no lines.
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Chapter 4

Blow-ups

Monday, March 24

4.1 Definition and examples

Here is the prototypical example of a blow-up.

Example 4.1. Consider the incidence correspondence

B = {(a, L) | a ∈ An
k , L a line through a and the origin in An

k} ⊆ An
k × Pn−1

k .

Let the coordinate ring of An
k × Pn−1

k be k[x1, . . . , xn, y1, . . . , yn]. We show that B is a
Zariski closed subset of An

k × Pn−1
k and we find its defining equations. A point

(a, L) ∈ An
k × Pn−1

k belongs to B ⇐⇒
given L = [`1 : `2 : · · · : `n] then [a] = [`1 : `2 : · · · : `n] ⇐⇒

the following matrix has rank one

[
`1 `2 · · · `n
a1 a2 · · · an

]
⇐⇒

(a, L) ∈ VA×P(2× 2 minors of

[
y1 y2 · · · yn
x1 x2 · · · xn

]
) ⇐⇒

(a, L) ∈ VA×P(xiyj − xjyi : 1 ≤ i, j ≤ n).

Let’s consider the projection π : B → An
k . The fiber π−1(a) is a singleton for a 6= 0

is not the origin because it consists of the pair a and the unique line connecting a with
the origin. However, the fiber π−1(0) = {0}×Pn−1

k := E consists of all the lines in An
k ,

that is all of Pn−1
k . Since this fiber is different, we refer to it as the exceptional set.

From this we see that π induces an isomorphism between the open sets U = An
k \{0}

and U ′ = B \E with inverse a 7→ (a, [a]). We will see below that since An
k and B have

isomorphic dense open sets it follows that An
k and B are birational. However, they are

not isomorphic.

73



9. Birational Maps and Blowing Up 71

Proof. Let U = X\V ( f1, . . . , fr). Then any point (x,y) 2U ⇥Pr�1 on the graph G f of the function
f : U! Pr�1, x 7! ( f1(x) : · · · : fr(x)) satisfies (y1 : · · · :yr) = ( f1(x) : · · · : fr(x)), which is equivalent
to yi f j(x) = y j fi(x) for all i, j = 1, . . . ,r. As these equations then also have to hold on the closure X̃
of G f , the lemma follows. ⇤
Example 9.15 (Blow-up of An at the coordinate functions). Our first non-trivial (and in fact the
most important) case of a blow-up is that of An at x1, . . . ,xn. This blow-up fAn is then isomorphic to
An on the open subset U = An\V (x1, . . . ,xn) = An\{0}, and by Lemma 9.14 we have

fAn ⇢ {(x,y) 2 An⇥Pn�1 : yix j = y jxi for all i, j = 1, . . . ,n} =: Y. (1)

We claim that this inclusion is in fact an equality. To see this, let us consider the open subset
U1 = {(x,y) 2 Y : y1 6= 0} with affine coordinates x1, . . . ,xn,y2, . . . ,yn in which we set y1 = 1. Note
that for given x1,y2, . . . ,yn the equations (1) for Y then say exactly that x j = x1y j for j = 2, . . . ,n
(since this implies yix j = x1yiy j = y jxi for all i, j). Hence there is an isomorphism

An!U1 ⇢ An⇥Pn�1, (x1,y2, . . . ,yn) 7! ((x1,x1y2, . . . ,x1yn),(1:y2 : · · · :yn)). (2)

Of course, the same holds for the open subsets Ui of Y where yi 6= 0 for i = 2, . . . ,n. Hence Y
can be covered by n-dimensional affine spaces. As these affine spaces intersect e. g. in the point
((1, . . . ,1),(1: · · · :1)), this means by Exercises 2.21 (b) and 2.34 (a) that Y is irreducible of dimen-
sion n as well. But as Y contains the closed subvariety fAn which is also of dimension n by Remarks
9.6 and 9.11, we conclude that we must already have Y = fAn.

In fact, both the description (1) of fAn (with equality, as we have just seen) and the affine coordinates
of (2) are very useful in practice for explicit computations on this blow-up.

Let us now also study the blow-up (i. e. projection) morphism p : fAn ! An of Construction 9.10.
We know already that this map is an isomorphism on U = An\{0}. In contrast, the exceptional
set p�1(0) is given by setting x1, . . . ,xn to 0 in the description (1) above. As all defining equations
xiy j = x jyi become trivial in this case, we simply get

p�1(0) = {(0,y) 2 An⇥Pn�1} ⇠= Pn�1.

In other words, passing from An to fAn leaves all points except 0 unchanged, whereas the origin is
replaced by a projective space Pn�1. This is the geometric reason why this construction is called
blowing up — in fact, we will slightly extend our terminology in Construction 9.17 (a) so that we
can then call the example above the blow-up of An at the origin, instead of at the functions x1, . . . ,xn.

Because of this behavior of the inverse images of p one might be tempted to think of fAn as An with
a projective space Pn�1 attached at the origin, as in the picture below on the left. This is not correct
however, as one can see already from the fact that this space would be reducible, whereas fAn is not.

0
A2

A2

Wrong picture

p

0
A2

p�1(0)

Correct picture

p

P1

fA2

L

L̃

exceptional set

Figure 4.1: Blow-up at A2
k at the origin

For the case n = 2 A picture of (a portion of) B and the projection is included

below, where B is denoted Ã2
k. The picture is missing a line at infinity. The complete

picture of Ã2
k would look like a Möbius strip (but unbounded along the direction marked

L): when the strip has rotated 360o around the exceptional fiber, its end will be glued
back to its beginning.

The variety B in our example above is the blow-up of An
k at the origin.

We now generalize this.

Definition 4.2. Let X ⊆ An
k be a classical affine variety and f0, . . . , fr elements of

k[X] = k[x1, . . . , xn]/I(X) not all equal to 0 and set U = X \ V (f0, . . . , fr). We have
a well-defined morphism of quasi-projective varieties

f : U → Pr, f(a1, . . . , an) = [f0(a1, . . . , an) : f1(a1, . . . , an) : · · · : fr(a1, . . . , an)]

The graph of this morphism is the closed sub-variety of U × Pr

Γf := {(a, f(a)) | a ∈ U} ⊆ U × Pr.

Since Γf is closed in U × Pr but U × Pr is open in X × Pr, we have that (except in
trivial situations) Γf is not closed in X × Pr.

The blow-up of X along f0, . . . , fr is X̃f0,...,fr = Γf , the Zariski closure of Γf in
X × Pr. Note that in general, X × Pr is neither affine nor projective, only quasi-
projective, thus X̃ is also in general only a quasi-projective variety. We write this
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quasi-projective variety X̃f for short or sometimes as X̃ when the fi’s are clear from
context.

To talk about Zariski closure in X × Prk ⊆ An × Prk we need to know what are
the Zariski closed subsets of An

k × Prk. Let k[x1, . . . , xn] be the affine coordinate
ring of An

k and k[Y0, . . . , Yr] the projective coordinate ring of Prk. Declare an el-
ement of k[x1, . . . , xn, Y0, . . . , Yr] to be homogenous of degree d if it has the form∑

I fI(x1, . . . , xn)Y I where I ranges over r+1 tuples with |I| = d. In other words, make
k[x1, . . . , xn;Y0, . . . , Yr] into a graded ring by declaring deg(xi) = 0 and deg(Yj) = 1.

Proposition 4.3. For any homogeneous elements F1, . . . , Fl of the graded ring
k[x1, . . . , xn, Y0, . . . , Yr], where deg(xi) = 0 and deg(Yj) = 1, the set

V A×P(F1, . . . , Fl) := {((a1 . . . , an), [b0 : b1 : · · · : br]) ∈ An×Pr | Fj(a1, . . . , an, b0, . . . , br) = 0, ∀j}.

is a well-defined, closed subset of An × Pr and every closed subset of An × Pr has this
form.

With the notation in definition 4.2, let π : X̃f → X be the morphism induced by
the projection X × Pr → X. Since X̃f ∩ U × Pr = Γf the fibers of π over a point
P ∈ U is the one-point set (U, f(U)). In fact, π−1(U) = Γf ⊆ U × Pr. But for a
point P outside of U , the fiber will often be a closed subset of {P}×Pr ∼= Pr typically
consisting of more than one point.

We now see that U ∼= Γf and that the blow-up X̃f acts as a domain that the map
f can be extended to. Moreover we can compute the blow-up of a variety Z by first
blowing up the ambient space X and then taking the stric transform of Z, that is, the
closure of π−1(Z) withe the exceptional set removed.

Proposition 4.4 (Properties of blow-ups). For the blow-up X̃f in Definition 4.2,
setting Y = VA(f0, . . . , fr) we have

1. the projection π : X̃f → X induces an isomorphism X \ Y = U ∼= Γf = X̃f \
π−1(Y ).

2. if X is irreducible, then dim X̃f = dimX

3. the regular map f extends to a map X̃f → Prk.

4. if Z ⊆ X is a subvariety such that Y ⊆ Z ⊆ X, then Z̃ ⊆ X̃ and Z̃ =
π−1(Z) \ π−1(Y ), where denotes Zariski closure in X̃ and π : X̃ → X is the

projection map. The sub-variety Z̃ is called the strict transform of Z in X̃.

Proof. 1. The inverse map is the regular map ι : U → X̃f , ι(a) = (a, f(a)).
2. Since the fi are not all zero, we know that (f0, . . . , fr) 6= (0) thus Y 6= X. Then

U is dense in X and Γf is dense in X̃f so by part 1. we have dimX = dimU =

dim Γf = dim X̃f .
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3. We have that f factors as U
ι−→ X̃f

π2−→ Prk. Identifying U with ι(U) gives that

π2 : X̃f → Prk extends f .
4. By definition, if Γf is the graph of f : X \ Y → Prk and Γ′f is the graph of

f : Z \ Y → Prk, then Γ′f ⊆ Γf . Taking Zariski closures gives Z̃ ⊆ X̃.
It is clear that Γ′f ⊆ π−1(Z), and since π−1(Z) is Zariski closed we conclude that

Z̃ ⊆ π−1(Z). By part 1. there is an isomorphism Z \ Y ∼= π−1(Z) \ π−1(Y ) = Γ′f ,
whence the claim follows.

Wednesday, March 26
We now compute several examples of blow-ups.

Example 4.5. Let X = A2 with coordinate ring k[x, y], r = 1, and f0 = x and f1 = y.
Then U = X \ {(0, 0)} and recall that we can think of

f : U → P1, f(a, b) = [a : b]

as the function sending a point in the plane to the slope of the line joining that point
and the origin. (A point [a : b] ∈ P1 is identified with the slope b/a, interpreted as the
slope of a vertical line when a = 0.)

I claim Ã2 = Ã2
x,y is the closed subset Z of A2 × P1 given by

Z := V A×P(xT − yS) = {(a, b), [c : d]) | ad = bc} ⊆ A2 × P1

where we write the projective coordinate ring of P1 as k[S, T ].
Let us prove this carefully: If we remove π−1(0, 0) (i.e., the vertical line in the

picture) from Z we get the set

{(a, b), [c : d]) | (a, b) 6= (0, 0), ad = bc} = {(a, b), [a : b]) | (a, b) 6= (0, 0)}
which is precisely the graph Γf of f : U → P1. Thus Z = Γf ∪ {(0, 0)} × P1. Since Z

is closed in A2 × P1, it follows that Ã2 ⊆ Z. On the other hand, suppose C ⊆ A2 × P1

is any closed subset that contains Γf . We need to show C contains {(0, 0)} × P1. For
any fixed point [c : d] ∈ P1, we have

Γf ∩ (A2 × {[c : d]}) = {((a, b), [c : d]) | (a, b) 6= (0, 0), ad = bc}
which we may identify with the subset L \ {(0, 0)} of A2, where L is the line in A2

containing the origin and (c, d). Note that the closure of L \ {(0, 0)} in A2 is all of L
and hence the closure of Γf ∩A2×{[c : d]} in A2×{[c : d]} contains (0, 0, [c : d]). Since
C ∩ A2 × {[c : d]} is closed in A2 × {[c : d]}, we conclude that C must also contain
(0, 0, [c : d]). Since [c : d] was arbitrary, this proves C contains {(0, 0)} × P1.

So Ã2 = Z, which is pictured above in Figure 4.1. A bit of intuition the image
above suggests: by blowing up the origin in A2

k, we have replaced the origin with P1

and in this way we keep track of how we approach the origin: If we approach the origin

along the line L : xb− ya = 0, the lift of line to Ã2 intersects the copy of P1 at [a : b],
the slope of this line, interpreted as a point in P1.
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Let us reinforce the intuition regarding tangent directions with a singular example:

Example 4.6. Take X to be the affine plane curve X = V (y2−x2(x+1)), the classical
node, and let f0 = x and f1 = y as before (but now interpreted as elements in k[X].)
Then I claim that the blowup X̃ along f0, f1 is the subset of X × P1 ⊆ A2 × P1 given
by

X̃ = C := V A2×P1

(y2 − x2(x+ 1), xT − yS, T 2 − S2(x+ 1))

where as before kP[P1] = k[S, T ]. How did I come up with this? The first two equations
are clear. Starting with y2 = x2(x+1) the second equation gives x = y(S/T ) (provided
T 6= 0) and thus y2 = y2(S2/T 2)(y(S/T ) + 1) and so upon multiplying through by T 3

we get T 3y2 = y2S2(yS+T ) = y2S2(xT +T ), and now divide through by the common
factor of y2T to get T 2 = S2(x+1). One would get the same conclusion if one assumed
that S 6= 0 and solved for y = x(T/S). Since at least one of S or T are not zero, this

reasoning says that the third equation must hold on the blow-up X̃.
Let us now check carefully that X̃ = C:
First we note that Γf ⊆ C. Since C is closed in A2 × P1, it follows that X̃f ⊆ C.

To show equality, we just need to show X̃f is dense in C. To accomplish that, we first
show that C is isomorphic to the affine line:

Notice the last polynomial in the definition of C gives that if S = 0 then T = 0,
and hence C ∩ A2 × {[0 : 1]} = ∅. Thus C is a closed subset of A2 × U1 ⊆ A2 × P1.
Under the isomorphism A3 ∼= A2 × U1 (“set S = 1 and replace T with t = T/S”), we
have

C ∼= V (y2 − x2(x+ 1), xt− y, t2 − (x+ 1)) ⊆ A3

where k[A3] = k[x, y, t]. The last equation allows us to solve for x in terms of t and
then the second allows us to solve for y in terms of t. Moreover, the first equation is a
consequence of the latter two. So:

V (y2 − x2(x+ 1), xt− y, t2 − (x+ 1)) = V (x− t2 + 1, y − y3 + t).

In terms of coordinate rings we have

k[x, y, t]/
(
y2 − x2(x+ 1), xt− y, t2 − (x+ 1)

) ∼= k[x, t]/
(
(xt)2 − x2(x+ 1), t2 − (x+ 1)

)

∼= k[t]/
(
((t2 − 1)t)2 − (t2 − 1)2t2

)

= k[t].

This proves A1 ∼= V (x− t2 + 1, y− y3 + t) via the map sending z to (z2− 1, z3− z).

In other words, we have an isomorphism g : A1
∼=−→ C given by

g(z) = (z2 − 1, z3 − z, [1 : z]).

(Note that [z2 − 1 : z3 − z] = [1 : z] provided z2 − 1 6= 0.) Finally, under this
isomorphism, Γf corresponds to A1 \ {1,−1}. This is clearly dense in A1 and thus Γf
is dense in C. Hence, X̃ = C as claimed.
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We note that the composition of the isomorphism A1
∼=−→ X̃ and the canonical map

π : X̃ → X is the parameterization of X that we worked out before. Recall this
parameterization was onto but not injective. By blowing up, we’ve made it into an
isomorphism.

Here is a picture of C from Gathmann:

74 Andreas Gathmann

x2

x1

x2

x1
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X1 = V (x2 + x2
1) X2 = V (x2

2� x2
1� x3

1) X3 = V (x2
2� x3

1)

X1

X2

X3

Note that by Remark 9.12 the blow-ups X̃i of these curves at the origin (for i = 1,2,3) are contained
as strict transforms in the blow-up fA2 of the affine plane at the origin as in Example 9.15. They can
thus be obtained geometrically as in the following picture by lifting the curves Xi\{0} by the map
p : fA2! A2 and taking the closure in fA2. The additional points in these closures (drawn as dots in
the picture below) are the exceptional sets of the blow-ups. By definition, the tangent cones C0Xi
then consist of the lines corresponding to these points, as shown in gray below. They can be thought
of as the cones, i. e. unions of lines, that approximate Xi best around the origin.

pp p

X̃1

X1

C0X1 C0X2 C0X3

X3X2

A2

X̃2

A2 A2

fA2 fA2 fA2

X̃3

Let us now study how these tangent cones can be computed rigorously. For example, for a point
((x1,x2),(y1 :y2)) 2 X̃2 ⇢ fA2 ⇢ A2⇥P1 we have x2

2� x2
1� x3

1 = 0 (as the equation of the curve)
and y1x2 � y2x1 = 0 by Lemma 9.14. The latter means that the vectors (x1,x2) and (y1,y2) are
linearly dependent, i. e. that y1 = l x1 and y2 = l x2 away from the origin for some non-zero l 2 K.
Multiplying the equation of the curve with l 2 thus yields

l 2 (x2
2� x2

1� x3
1) = 0 ) y2

2� y2
1� y2

1x1 = 0

on X̃2\p�1({0}), and thus also on its closure X̃2. On p�1({0}), i. e. if x1 = x2 = 0, this implies

y2
2� y2

1 = 0 ) (y2� y1)(y2 + y1) = 0,

so that the exceptional set consists of the two points with (y1 :y2) 2 P1 equal to (1:1) or (1: � 1).
Consequently, the tangent cone C0X2 is the cone in A2 with the same equation

(x2� x1)(x2 + x1) = 0,

i. e. the union of the two diagonals in A2 as in the picture above.

Note that the effect of this computation was exactly to pick out the terms of minimal degree of the
defining equation x2

2� x2
1� x3

1 = 0 — in this case of degree 2 — to obtain the equation x2
2� x2

1 = 0
of the tangent cone at the origin. This obviously yields a homogeneous polynomial (so that its affine
zero locus is a cone), and it fits well with the intuitive idea that for small values of x1 and x2 the

Taking it for granted that X̃ = C, we see that the fiber of π : X̃ → A2 over any
point other than the origin is just one point and the fiber over (0, 0) may be identified
with V P(T 2− S2) = {[1 : 1], [1 : −1]} ⊆ P1. Note that the “two tangent lines” to X at

the origin have been “pulled apart” in the blow-up X̃, and indeed as shown above X̃
becomes smooth (in fact, as we shall soon see, it is isomorphic to A1).

Example 4.7. Let us play the same game starting with cuspidal affine plane curve
X = V (y2 − x3). Let X̃ be the blow-up of X along x, y so that

X̃ ⊆ V (y2 − x3, xT − yS) ⊆ A2 × P1.

Note that if y2 = x3 then (y/x)2 = x for all x 6= 0. Given xT = yS, we have y/x = T/S
(if S 6= 0) and thus (T/S)2 = x and hence T 2 = xS2. This suggests that

X̃ = Z := V (y2 − x3, xT − yS, T 2 − xS2) ⊆ A2 × P1.

Indeed, since Γf = {(a, b, [a : b] | (a, b) 6= (0, 0), b2 = a3} ⊆ Z, X̃f is the closure of

Γf and Z is closed, we certainly have X̃ ⊆ Z. To show the opposite containment, we
first prove Z ∼= A1:
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To see this, first note that Z∩A2×{[0 : 1]} = ∅ (since V (T 2−xS2)∩A2×{[0 : 1]} =
∅). So Z is a closed sub-variety of A2×U1 ⊆ A2×P1. Moreover, under the isomorphism
A3 ∼= A2 × U1, Z corresponds to V (y2 − x3, xt− y, t2 − x) where k[A3] = k[x, y, t]. We
have V (y2 − x3, xt − y, t2 − x) = V (xt − y, t2 − x) = V (y − t3, x − t2) and this shows

that the map A1
∼=−→ V (y2 − x3, xt− y, t2 − x) sending a to (a2, a3) is an isomorphism.

In other words, we have an isomorphism A1
∼=−→ Z sending a to (a2, a3, [1 : a]) is an

isomorphism. (Note that [1 : a] = [a2 : a3] if a 6= 0.)
Now, under the isomorphism A1 ∼= Z constructed here, the subset Γf of Z corre-

sponds to A1 \ {0}. Since A1 \ {0} is dense in A1, Γf is dense in Z. Thus X̃f = Z.
Here is a picture:

74 Andreas Gathmann

x2

x1

x2

x1

x2

x1

X1 = V (x2 + x2
1) X2 = V (x2

2� x2
1� x3

1) X3 = V (x2
2� x3

1)

X1

X2

X3

Note that by Remark 9.12 the blow-ups X̃i of these curves at the origin (for i = 1,2,3) are contained
as strict transforms in the blow-up fA2 of the affine plane at the origin as in Example 9.15. They can
thus be obtained geometrically as in the following picture by lifting the curves Xi\{0} by the map
p : fA2! A2 and taking the closure in fA2. The additional points in these closures (drawn as dots in
the picture below) are the exceptional sets of the blow-ups. By definition, the tangent cones C0Xi
then consist of the lines corresponding to these points, as shown in gray below. They can be thought
of as the cones, i. e. unions of lines, that approximate Xi best around the origin.

pp p

X̃1

X1

C0X1 C0X2 C0X3

X3X2

A2

X̃2

A2 A2

fA2 fA2 fA2

X̃3

Let us now study how these tangent cones can be computed rigorously. For example, for a point
((x1,x2),(y1 :y2)) 2 X̃2 ⇢ fA2 ⇢ A2⇥P1 we have x2

2� x2
1� x3

1 = 0 (as the equation of the curve)
and y1x2 � y2x1 = 0 by Lemma 9.14. The latter means that the vectors (x1,x2) and (y1,y2) are
linearly dependent, i. e. that y1 = l x1 and y2 = l x2 away from the origin for some non-zero l 2 K.
Multiplying the equation of the curve with l 2 thus yields

l 2 (x2
2� x2

1� x3
1) = 0 ) y2

2� y2
1� y2

1x1 = 0

on X̃2\p�1({0}), and thus also on its closure X̃2. On p�1({0}), i. e. if x1 = x2 = 0, this implies

y2
2� y2

1 = 0 ) (y2� y1)(y2 + y1) = 0,

so that the exceptional set consists of the two points with (y1 :y2) 2 P1 equal to (1:1) or (1: � 1).
Consequently, the tangent cone C0X2 is the cone in A2 with the same equation

(x2� x1)(x2 + x1) = 0,

i. e. the union of the two diagonals in A2 as in the picture above.

Note that the effect of this computation was exactly to pick out the terms of minimal degree of the
defining equation x2

2� x2
1� x3

1 = 0 — in this case of degree 2 — to obtain the equation x2
2� x2

1 = 0
of the tangent cone at the origin. This obviously yields a homogeneous polynomial (so that its affine
zero locus is a cone), and it fits well with the intuitive idea that for small values of x1 and x2 the

This time there is just one tangent line to X and the origin, and this is why there
is just one point in X̃ lying over the origin.

As before the composition of A1
∼=−→ X̃

π−→ X is the parameterization of X that we
knew about before. Recall this parameterization is bijective but not an isomorphism
of varieties.

Friday, March 28

4.2 The coordinate ring of the blow-up

4.2.1 Properties of blow-ups

Let us record some general properties of blow-ups:
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Proposition 4.8. Assume X ⊆ An is a classical affine variety, let f0, . . . , fr ∈ k[X],

and set X̃ ⊆ An×Pr the blow-up of X along f0, . . . , fr. Let π : X̃ → X be the canonical
map, let x1, . . . , xn be affine coordinate functions for An and let Y0 . . . , Yr be projective
coordinate functions for Pr.

1. We have X̃ ⊆ VX({fiYj − fjYi | i 6= j}) ⊆ X × Pr, but equality does not hold in
general.

2. The equality X̃ = VX({fiYj − fjYi | i 6= j}) does hold provided X is equi-
dimensional and f0, . . . , fr is a regular sequence, by which I mean that
dim(VX(f0, . . . , fr)) = dim(X)− r − 1 (the smallest possible value).

3. X̃ depends only on the ideal of k[X] generated by the fi’s up to isomorphism.

That is, If (g0, . . . , gs) = (f0, . . . , fr) and X̃ ′ is the blowup of X along g0, . . . , gs,

then there is an isomorphism g : X̃ → X̃ ′ such that π′ ◦ g = π.

Proof. 1. For any point P ∈ U , the point (P, [f0(P ) : · · · : fr(P )]) in Γf is a zero of
fiXj − fjXi for all i 6= j since fi(P )fj(P )− fj(P )fi(P ) = 0. So VX({fiYj − fjYi |
i 6= j}) contains Γf and, since it is closed in X × Pr and X̃ is the closure of Γf ,

it contains X̃.

2. Let Z = VX({fiYj − fjYi | i 6= j}). Since Γf ⊆ X̃f ⊆ Z, X̃f is the closure
of Γf , and Z is closed in X × Pr, it suffices to prove that for each fixed point
[b] = [b0 : · · · : br] ∈ Pr, we have that Γf ∩X×{[b]} is dense in Z∩X×{[b]}. We
will identity both of these intersections with subsets of X using X ∼= X × {[b]}.
Let us prove this first when ~b = (1, 0, . . . , 0). In this case Z ∩ X × {[~b]} corre-

sponds to the closed subset VX(f1, . . . , fr) of X and Γf ∩X × {[~b]} corresponds
to {P ∈ X|f0(P ) 6= 0, f1(P ) = · · · = fr(P ) = 0} = VX(f1, . . . , fr) \ VX(f0). Re-
call that by Krull’s Theorem, each irreducible component of VX(f1, . . . , fr) has
dimension at least dim(X) − r. Since we assume VX(f0, . . . , fr) has dimension
equal to dim(X) − r − 1, it follows that VX(f0) must not contain any of the ir-
reducible components of VX(f1, . . . , fr). This is equivalent to the statement that
VX(f1, . . . , fr) \ VX(f0) is dense in VX(f1, . . . , fr).

For the general case, there is an (r + 1) × (r + 1) invertible matrix A such that
(1, 0, . . . , 0) = b · A. Set (f ′0, . . . , f

′
r) = (f0, . . . , fr)A. The matrix A determines

an automorphism of Prk and hence of X × Pr. Under it, the X × {[b]} is sent to
X × {[1 : 0 : · · · : 0]}, Γf is sent to Γf ′ and Z is sent to Z ′ = VX({f ′iYj − f ′jYi |
i 6= j}). Morever, it is not hard to see that (f ′0, . . . , f

′
r) = (f0, . . . , fr) and hence

dim(VX(f ′0, . . . , f
′
r)) = dim(VX(f0, . . . , fr)) = dim(X)−r−1. So, we have reduced

to the case already considered.

3. (I’ll just provide a sketch of a proof for this part.) For each 0 ≤ i ≤ s we have

gi =
∑r

j=0 hi,jfj for some hi,j ∈ k[X]. Consider the function φ : X̃ → X̃ ′ given
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by sending

φ(a, [a0 : · · · : ar])) = (a, [
∑

j

h0,j(a)aj :
∑

j

h1,j(a)aj : · · · :
∑

j

hs,j(a)aj]).

It is well-defined and a morphism of varieties. Likewise, we have fi =
∑

j h
′
i,jgj

which leads to a morphism φ′ : X̃ ′ → X̃. These are mutually inverse.

Remark 4.9. In view of part 3 of the Theorem above henceforth we will refer to the
blow-up of an affine variety X along an ideal I = (f0, . . . , fr) of k[X], and write it as

X̃I .

Monday, March 31 & Wednesday, April 2

4.2.2 The Rees algebra of an ideal

Definition 4.10. Let R be a ring and I be an ideal. The Rees ring of I is the N-graded
R-algebra

R(I) = R[IT ] :=
⊕

d≥0

IdT d = R⊕ IT ⊕ I2T 2 ⊕ · · · ⊆ R[T ]

with multiplication determined by (aT d)(bT e) = abT d+e for a ∈ Id, b ∈ Ie and ex-
tended by the distributive law for nonhomogeneous elements and grading determined
by deg(T ) = 1 and deg(r) = 0 for r ∈ R.

Here T is an indeterminate and Id means the d-th power of the ideal I in R, namely
the ideal generated by d-fold products of elements of I

Id = (u1u2 · · ·ur | ui ∈ I).

If I = (f0, . . . , fr) and we wish to find a presentation of R(I) we may start by
recalling that R(I) is generated as a R-algebra by f0T, · · · , frT . Thus we have a
surjective map of R-algebras

ϕ : R[Y0, . . . , Yr]� R(I) ϕ(Yi) = fiT. (4.1)

Let P denote the kernel of ϕ. By the first isomorphism theorem,R(I) ∼= R[Y0, . . . , Yr]/P
is a presentation of the Rees algebra. We now determine P .

Proposition 4.11. Suppose R is a domain and I = (f0, . . . , fr) with each fi 6= 0 is an
ideal of R. Then Setting S = R[Y0, . . . , Yr] and L = (fiYj − fjYi) ⊆ S we have

R(I) ∼= R[Y0, . . . , Yr]/P where P = L : IS∞.

To prove this we need a lemma.
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Lemma 4.12. Suppose that P is a prime ideal in a ring S. Suppose that I, L are
ideals in S such that I 6⊂ P,L ⊂ P and the localizations LQ = PQ for any prime ideal
Q in S such that I 6⊂ Q. Then

P = L :S I
∞ := {f ∈ S | fId ⊆ L for some d ≥ 0}.

Proof. L has primary decomposition L = Q1 ∩ · · · ∩ Qs ∩ P with I ⊆ √Qi for all
1 ≤ i ≤ s. Thus there exists d � 0 such that Id ∩ Qi for all 1 ≤ i ≤ s yieldsing
IdP ⊆ L and therefore P ⊆ L : I∞.

Conversely, if f ∈ L : I∞ we have fId ⊆ L ⊆ P . Since there exists g ∈ Id such that
g 6∈ P and P is prime it follows that f ∈ P , so L : I∞ ⊆ P .

Proof of Theorem 4.11. Setting S = R[Y0, . . . Yr] and P to be the kernel of the map
(4.1), we see P is a prime ideal since R(I) ⊆ R[T ] is a domain. We prove the claimed
description P = L :S I

∞ by localization.
Notice that L ⊆ P . We show that for 0 ≤ i ≤ r we have LS[1/fi] = PS[1/fi].

Indeed, for each i, LS[1/fi] = (Yj − fj
fi
Yi | 0 ≤ j ≤ r). Let F ∈ P have degree d.

Then we have

F ≡ rY d
i (mod LS[1/fi]), for some r ∈ R[1/fi].

Clearing denominators we may assume r ∈ R. Since F ∈ P we have 0 = ϕ(F ) = rfdi
in R(I). Since R(I) is a domain and fi 6= 0 then r = 0. Thus we have shown
LS[1/fi] = PS[1/fi].

If Q is a prime ideal in S so that I 6⊆ Q then there is some fi 6∈ Q. Then

LQ = LS[1/fi]Q = PS[1/fi]Q = PQ.

Finally we show that I 6⊆ P . Suppose that I ⊆ P then by the above S[1/fi] =
IS[1/fi] ⊆ PS[1/fi] gives PS[1/fi] = LS[1/fi] = S[1/fi]. The equation (4.1) then
gives that R(I)[1/fi] = 0, which is a contradiction since fi 6= 0 and R(I) is a domain.

From all of the above the claimed conclusion follows by Lemma 4.12.

Example 4.13. If I is an ideal generated by a regular sequence f0, . . . , fr then

R(I) ∼= R[Y0, . . . , Yr]/(fiYj − fjYi).
This follows from Proposition 4.8 and Theorem 4.14.

4.2.3 The coordinate ring of a blow-up

Recall that in the set-up of blow-ups the blow-up of a variety X is a a subset X̃ ⊆
X × Prk. We know that the coordinate ring of X × Prk is S = k[X] ⊗k [Y0, . . . Yr] =
k[X][Y0, . . . , Yr]. We wish to find the defining ideal of the blow-up, that is,

IX×Pr
k
(X̃f ) := (g ∈ k[X][Y0, . . . , Yr] | g(a, f(a)) = 0, ∀(a, f(a)) ∈ Γf ).

and we define the coordinate ring of X̃ by k[X̃] = S/IX×Pn
k
(X̃).

Our main goal is to prove the following:
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Theorem 4.14. Suppose X is an irreducible affine variety and I = (f0, . . . , fr) ⊆
k[X] is an ideal with all fi 6= 0 and X̃ = X̃I ⊆ X × Prk has coordinate ring S =
k[X][Y0, . . . Yr]. Then the coordinate ring of the blow-up is isomorphic to the Rees ring
of I as graded R-algebras

k[X̃] =
S

IX×Pn
k
(X̃)

∼= R(I).

In particular, if L = (fiYj − fjYi | 0 ≤ i, j ≤ r) then

I(X̃) = L :S IS
∞ = {f ∈ S | fId ⊆ L for some d ≥ 0}.

Example 4.15. Consider the cusp X = V A(y2 − x3) and I = (x, y) ⊂ k[X]. Then

L = (xT−yS) ⊆ k[x,y,S,T ]
(y2−x3)

corresponds to the ideal L′ = (y2−x3, xT−yS) of k[x, y, S, T ]
by the lattice isomorphism theorem. Then

L′ : I∞ = (y2 − x3, xT − yS, yT − x2S, T 2 − xS2)

corresponds by lattice isomorphism to

L : I∞ = (xT − yS, yT − x2S, T 2 − xS2) ⊆ k[x, y, S, T ]

(y2 − x3)

and thus

k[X̃] ∼= k[x, y, S, T ]

(y2 − x3, xT − yS, yT − x2S, T 2 − xS2)
.

Remark 4.16. The defining ideal of a blow-up at I encodes relations among the gener-
ators of the powers of I. In the example above with I = (f0 = x, f1 = y) the equations
of the blow-up translates as follows

xT − yS is mapped to the “Koszul syzygy” xf1 − yf0 = 0

yT − x2S is mapped to the relation yf1 − x2f0 = 0

T 2 − xS2 is mapped to the relation on I2 f 2
1 − xf 2

0 = 0.

We now prove Theorem 4.14 using Proposition 4.11.

Proof of Theorem 4.14. We have an inclusion ι : X̃I ⊆ X × Prk which induces a map
between the coordinate rings

ι∗ : S := k[X × Prk]→ k[X̃I ].

This map is surjective by definition of k[X̃I ] (every function in k[X̃I ] is a restriction of

a function in S to X̃).
I claim this map is the same as in (4.1), namely it is given by ι∗(Yi) = fi and

ι∗(r) = r for each r ∈ R = k[X]. By definition of pullback, ι∗(Yi) = Yi ◦ ι = fi at least
on Γf since Yi ◦ ι picks out the i-th coordinate of [f0(a) : · · · : fr(a)]. Since Yi ◦ ι = fi
is true on Γf it is also true on its closure X̃I . The proof for ι∗(r) = r ◦ ι = r is similar.

It follows that k[X̃I ] ∼= R(I).
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Chapter 5

Smoothness and Tangent Space

Friday, April 4 2025

5.1 Tangent space and tangent cone

We study two ways to approximate a given variety around a given point: one approxi-
mation is given by a linear space (the tangent space) and another by an affine cone (the
tangent cone). Since both of these are defined “at a point”, they are local properties
of quasi-projective varieties. Since locally these varieties are affine we will restrict to
the case of affine varieties right away.

5.1.1 Tangent space

Every polynomial in k[x1, . . . , xn] has a Taylor expansion at a ∈ An
k given by

f(x1, . . . , xn) = f(a) +
n∑

i=1

∂f

∂xi
(a)(xi − ai)

︸ ︷︷ ︸
f1,a

+
1

2

n∑

i,j=1

∂f

∂xi∂xj
(a)(xi − ai)(xj − aj) + · · ·

︸ ︷︷ ︸
∈I(a)2

We define f1,a to be the homogeneous term of degree 1 in this expansion as indicated
above.

Definition 5.1. Let a be a point on an affine variety X ⊆ An
k . Then the tangent space

of X at a is the linear space

TaX := V A(f1,a | f ∈ I(X)) ⊆ Ank .

Here is a more concrete way of computing this space.

Lemma 5.2. In the definition above it suffices to consider generators, that is, if I =
(f (1), . . . , f (s)) then

TaX := V A(f
(j)
1,a | 1 ≤ j ≤ s).
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there is an isomorphism

TaX ∼= V A
(
∂f (j)

∂xi
(a)yi

)
= Null

(
∂f (j)

∂xi
(a)

)
.

Proof. The isomorphism is given by xi − ai 7→ yi, that is, translation by a.

Example 5.3. The tangent space of the parabola X1 = V A(y−x2) at the origin is the
horizontal axis T0X1 = V A(y) while the tangent space of both X2 = V A(y2−x2(x+1))
and X3 = V A(y2 − x3) at the origin is T0X = V (0) = A2

k.

We can give an intrinsic definition for the tangent space that does not depend on
the precise defining equations of X but rather only local information regarding the
point a ∈ X.

Recall that the regular functions at a on X form a local ring OX,a = k[X]I(a) by
Corollary 1.90. This ring is invariant with respect to isomorphism, i.e., if f : X → Y
is an isomorphism, then OX,a ∼= OY,f(a).

Theorem 5.4. Let IX(a) denote the ideal of k[X] defining a and ma = IX(a)OX,a.
There is a natural vector space isomorphism ma/m

2
a
∼= IX(a)/IX(a)2 ∼= Homk(TaX, k).

In other words, the tangent space TaX ∼= Homk(ma/m
2
a, k) is naturally the vector space

dual to ma/m
2
a, which is called the cotangent space.

Proof. Consider the k-linear map sending the class of a polynomial to its linear term,
regarded as a map restricted to the tangent space

ψ : IX(a)→ Homk(TaX, k), ψ(f) = f1,a|TaX .

By definition of the tangent space, this map is well-defined, that is, if f ∈ I(X) then
ψ(f) = 0. Moreover, note that ψ is surjective since any linear map on TaX can be
extended to a linear map on An

k . So by the first isomorphism theorem it suffices to
prove that Ker(ψ) = I(a)2.

Consider the vector subspace W = {g1,a | g ∈ I(X)} of k[x1, . . . , xn]1 and let d be
its dimension. Then its zero locus TaX has dimension n − d, and hence the space of
linear forms vanishing on TaX has dimension d again. As it clearly contains W , we
conclude that W must be equal to the space of linear forms vanishing on TaX.

So if f ∈ Kerψ, i.e. the linear term of f vanishes on TaX,we know that there is a
polynomial g ∈ I(X) with g1,a = f1,a. But then f − g has no constant or linear term,
and hence we have in k[X] that f = f − g ∈ ((xi−ai)(xj−aj) | 1 ≤ i, j ≤ n) ⊆ IX(a)2.
This shows Kerψ ⊆ IX(a)2.

Conversely if f, g ∈ IX(a), then (fg)1,a = f(a)g1,a+g(a)f1,a = 0·g1,a+0·f1,a = 0,and
hence ψ(fg) = 0. This shows IX(a)2 ⊆ Kerψ.

Set S = k[X] \ IX(a). Then OX,a = S−1k[X]. We’ll show

IX(a)/IX(a)2 ∼= S−1(IX(a)/IX(a)2) ∼= S−1IX(a)/(S−1IX(a))2 = ma/m
2
a.
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The second isomorphism follows from flatness of localization. For the first isomorphism
observe that the elements of S are already units in IX(a)/IX(a)2 as follows: since
IX(a)/IX(a)2 is annihilated by I(a), it is a k[X]/IX(a) = k[X]/(x1−a1, . . . , xn−an) =
k-module and since every element of S is a unit in k[X]/IX(a) it acts as a unit on
IX(a)/IX(a)2. In particular, for each s ∈ S there exists an s′ ∈ S so that ss′ = 1
in k[X]/IX(a) and thus (1/s)IX(a)/IX(a)2 = s′I(a)/IX(a)2 ⊆ IX(a)/IX(a)2. Thus
localizing IX(a)/IX(a)2 at S does not change anything.

Remark 5.5. The previous Proposition implies that dimk TaX = dimkma/m
2
a. By

Nakayama’s Lemma the latter is the minimal number of generators of ma also termed
the embedding dimension of the ring OX,a.

We can now make the tangent space into a functor.

Theorem 5.6. There is a functor

〈〈Affine varieties over k with a marked point〉〉 → 〈〈k-Vector spaces〉〉

given on objects by (X, a) 7→ TaX and on regular maps h : X → Y, h = (h1, . . . , hm)
by the induced linear map

dh : TaX → Tf(a)Y, df(v) =

(
∂hi
∂xj

(a)

)
v.

Proof. The proof is omitted.

Monday, April 7 2025

5.1.2 Tangent cone

Definition 5.7. Let X ⊆ An
k be an affine variety and assume a ∈ X. Consider the

blow-up X̃ of X at the ideal defining a, I(a) = (x1 − a1, . . . , xn − an). Its exceptional
set π−1(a) is then a projective variety. The affine cone of this exceptional set is called
the tangent cone CaX of X at a. We will consider CaX ⊆ Cone(Pn−1

k ) = An
k as a

closed subvariety of the same ambient affine space as for X.

Remark 5.8. It turns out that if 0 ∈ X the tangent cone at 0 can be described as

C0X = V A(f in | f ∈ I(X)),

where f in is the initial term of f or the homogeneous component of f of smallest degree.
Unlike the tangent space it is not enough to take initial forms of generators for I(X)
to compute the tangent cone, however this suffices when I(X) is principal.

Since f1,0 = f in when f has nonzero linear terms and otherwise f1,0 = 0 we see that
(f1,0 | f ∈ I(X)) ⊆ (f in | f ∈ I(X)) and so C0X ⊆ T0X. It is true more generally that
CaX ⊆ TaX for any a ∈ X.
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Example 5.9. The tangent cone of the parabola X1 = V A(y − x2) at the origin is
the horizontal axis C0X1 = V A(y) while the tangent cone of X2 = V A(y2 − x2(x+ 1))
is a union of two lines C0X2 = V A(y2 − x2) and for X3 = V A(y2 − x3) we have
C0X3 = V A(y2) is again the horizontal axis.

Note that unlike the tangent spaces, the tangent cones above have the same dimen-
sion as the respective varieties they are tangent to. We will see a formal reason for this
below.

Theorem 5.10. Let a be a point on an irreducible affine variety X. Then

1. dimTaX ≥ dimX and

2. dimCaX = dimX.

More generally, if X is not assumed irreducible:

1. dimTaX ≥ dimaX and

2. dimCaX = dimaX,

where dimaX is the local dimension of X at a, i.e. the largest dimension of an irre-
ducible component of X passing through a.

Proof. We may assume that X 6= {a}, since otherwise TaX = CaX = {a} = X and
the statement is trivial.

Let d = dimX and n = dimk TaX = dimkma/m
2
a, where ma is the maximal

ideal of OX,a. By Nakayama’s lemma, the ideal ma is generated by n elements, say
ma = (f1, . . . , fn) with fi = gi

hi
∈ k[X]IX(a). Then there exists an affine neighborhood

U of a in X such that IU(a) = (f1, . . . , fn) =: I. Indeed, if for some neighborhood
W we have IW (a) = (g1, . . . , gm) then (g1, . . . , gm)OX,a = (f1, . . . fn) means there exist
aij, bij ∈ OX,a such that gi =

∑
aijfj and fi =

∑
bijgj. Picking U so that aij, bij ∈ k[U ]

(e.g. U = D(lcm of the denominators of aij, bij)) yields the desired conclusion.

Let X̃f be the blow-up of X at f1, . . . , fn with canonical projection π : X̃ → X.

Since X̃f is a closed subvariety of X × Pn−1, and so π−1(a) ⊆ {a} × Pn−1
k , it has

dimension dim π−1(a) ≤ n − 1 (as a projective variety). We will show however that
dimπ−1(a) = d− 1.

We know from Proposition 4.4 that dim X̃ = dimX = d. The regular map π : X̃ →
X has as its pullback the inclusion π∗ : R := k[X] ↪→ k[X̃] ∼= R(I). Then the ideal
defining π−1(a) is π∗(I) = IR(I). We consider the open set Ui = D(Yi) ⊆ X × Pn−1

and we want to determine the defining ideal of the affine variety π−1(a)∩Ui in k[Ui] =

R[Y0
Yi
, . . . , Yi−1

Yi
, Yi+1

Yi
, . . . , Yn

Yi
]. Since on X̃ we have fiYj−fjYi = 0 on Ui we have

Yj
Yi

=
fj
fi

.
Thus we can rewrite

k[Ui] = R

[
f0

fi
, . . . ,

fi−1

fi
,
fi+1

fi
, . . . ,

fn
fi

]
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and we see that the ideal Ik[Ui] is principal:

Ik[Ui] = (fi)R

[
f0

fi
, . . . ,

fi−1

fi
,
fi+1

fi
, . . . ,

fn
fi

]

as fj = fi · fjfi ∈ (fi)k[Ui] implies Ik[Ui] ⊆ (fi)k[Ui] and the opposite containment is

evident. By Krull’s principal ideal theorem we conclude that dim π−1(a)∩Ui = dim(Ui∩
X̃f )− 1 = d− 1. Thus dimπ−1(a) = d− 1 ≤ n− 1 implies dimX = d ≤ dimTaX = n.

Since CaX is the affine cone of π−1(a), we have dimCaX = dim π−1(a) + 1 = d =
dimX.

Remark 5.11. By the localization argument in the proof of Theorem 5.4, the coordinate
ring of the tangent cone can be identified with the associated graded ring of R = k[X]
with respect to I = IX(a) or of OX,a with respect to ma, respectively

R(I)

IR(I)
=

⊕
d≥0 I

iT i⊕
d≥0 I

i+1T i
=
⊕

d≥0

I i/I i+1T i = grI(R) ∼=
⊕

d≥0

mi
a/m

i+1
a = grma

OX,a.

Then part 2 of Theorem 5.10 can be restated as

dimR = dim grI(R) and dimX = dim grma
OX,a.

5.2 Smoothness and the Jacobian criterion

Definition 5.12. A point a of a quasi-projective variety X is smooth or nonsingular
if CaX = TaX. A quasi-projective variety X is said to be smooth or nonsingular if all
points of X are nonsingular points of X.

Definition 5.13. A local ring R with maximal ideal m and residue field k = R/m is
called a regular local ring if its Krull dimension is equal to its embedding dimension,
that is

dimR = dimkm/m
2.

Theorem 5.14. The following are equivalent for a point a of an affine variety X ⊆ An
k :

1. a is a nonsingular point of X

2. dimk TaX = dimaX

3. OX,a is a regular local ring

4. (Jacobian criterion) for I(X) = (f1, . . . , fs) the rank of the Jacobian matrix is

rank

(
∂fi
∂xj

(a)

)

1≤i≤s,1≤j≤n
= n− dimaX.
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Proof. By definition, a is a nonsingular point of X iff CaX = TaX. Since CaX ⊆ TaX
and TaX is irreducible, the two varieties are equal iff dimCaX = dimTaX iff by
Theorem 5.10 dimaX = dimTaX. This shows (1) ⇐⇒ (2).

From Theorem 5.4 we have dimTaX = dimkma/m
2
a thus (2) ⇐⇒ dimkma/m

2
a =

dim k[X]I(a) = dimOX,a.

From Lemma 5.2 we deduce rank
(
∂fi
∂xj

(a)
)

= n−dimk TaX. Thus (2) ⇐⇒ (4).

Example 5.15. For any n, d ≥ 0 and any k, An
k , Pnk and Grk(n, d) are smooth. For

An
k we can check this locally utilizing the Jacobian criterion. Since Pnk and Grk(n, d)

are locally isomorphic to affine space, it follows these varieties are smooth as well.

Wednesday, April 9, 2025

Remark 5.16. It is a result of commutative algebra that any regular local ring is an
integral domain. Translating this into geometry using Theorem 5.14 this yields the
statement that a variety is locally irreducible at every smooth point a, i. e. that X
has only one irreducible component meeting a. Equivalently, any point on a variety at
which two irreducible components meet is necessarily a singular point.

Remark 5.17. Because dimTaX ≥ dimaX holds, the rank of the Jacobiam matrix
cannot exceed n− dimaX, so the Jacobian criterion can be reformulated as follows:

For X an algebraic variety with I(X) = (f1, . . . , fs) and a ∈ X, a is smooth
if and only if the rank of the Jacobian matrix is

rank

(
∂fi
∂xj

(a)

)

1≤i≤s,1≤j≤n
≥ n− dimaX.

In the projective case we have a similar criterion.

Proposition 5.18 (The projective Jacobian criterion). Let X ⊆ Pnk be a projective
variety with I(X) = (f1, . . . , fs). A point a ∈ X is smooth if and only if

rank

(
∂fi
∂xj

(a)

)
= n− dimaX,

equivalently, if and only if rank
(
∂fi
∂xj

(a)
)
≥ n− dimaX.

In the above criterion, note that the entries of the Jacobian matrix are not well-
defined because multiplying the coordinates of a by a scalar λ ∈ k∗ will multiply ∂fi

∂Xj
by

λdeg(fi)−1. However, these are just row transformations of the Jacobian matrix, which
do not affect its rank. Hence the condition on rank in the projective Jacobi criterion
is well-defined and can be checked on any representative of [a].
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Definition 5.19. Let X be a variety. The singular locus of X, denoted Xsing is the
set of non-smooth or singular points of X. The complement of the singular locus is
the smooth locus.

The Jacobian criterion gives equations for the singular locus.

Example 5.20. Consider the projective quadric Q = V P(X2
0 +X2

1 + · · ·+X2
r ) for some

0 ≤ r ≤ n. In characteristic 6= 2 the Jacobian matrix at a is

[
2a0 2a1 · · · 2ar 0 · · · 0

]

and a ∈ Qsing if and only if a0 = a1 = · · · = ar = 0. Thus

Qsing = {[0 : · · · : 0 : ar+1 : · · · : an] | [ar+1 : · · · : an] ∈ Pn−r−1
k }

and Q is smooth if and only if r = n. In characteristic two, X2
0 + X2

1 + · · · + X2
r =

(X0 + · · ·+Xr)
2 so we have I(Q) = X0 + · · ·+Xr. The singular locus is the same as

described above.

We now see that “most” points are smooth.

Theorem 5.21. The set of smooth points of a quasi-projective variety is non-empty
and Zariski open.

Proof. Let a ∈ X be a singular point. By passing to a sufficiently small affine open set
we may assume that X is affine and by Remark 5.16 that X is irreducible so that its
local dimension is constant at all points, equal to dimX. Then the Jacobian criterion
gives that the singular locus of X is the vanishing set of the minors of size n− dimX
of the Jacobian matrix of generators of I(X). Thus the smooth locus is open.

We will prove that the smooth locus is non-empty here only in the case of a hyper-
surface X = V (f) ⊂ An for a non-constant irreducible polynomial f ∈ k[x1, . . . , xn].
The general case can be reduced to this and any projective variety is birational to a
hypersurface. Assume that all points of X are singular. Then the Jacobian matrix of
f must have rank 0 at every point of X, which means that ∂f

∂xj
(a) = 0 for all a ∈ X

and all 1 ≤ j ≤ n. This yields that

∂f

∂xj
∈ I(X) = (f) ∀1 ≤ j ≤ n.

Since the degree of ∂f
∂xj

is smaller than that of f , it follows that ∂f
∂xj

= 0 for all 1 ≤
j ≤ n. In the case chark = 0 this is already a contradiction to f being non-constant.
If chark = p is positive, then f must be a polynomial in xp1, . . . , x

p
n, and since the

coefficients of f are also p-th powers (in an algebraically closed field), f = gp for some
g ∈ k[x1, . . . , xn]. This is a contradiction since f was assumed to be irreducible.

Friday, April 11, 2025
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5.3 Transverse intersection and Bertini’s theorem

Lemma 5.22. If X and Y are affine varieties and a ∈ X ∩ Y then

Ta(X ∩ Y ) ⊆ Ta(X) ∩ Ta(Y ).

Proof. Recall that I(X ∩Y ) =
√
I(X) + I(Y ), in particular I(X ∩Y ) ⊆ I(X) + I(Y ).

Moreover

TaX = V A(f1,a | f ∈ I(X))

TaY = V A(f1,a | f ∈ I(Y ))

TaX ∩ TaY = V A(f1,a | f ∈ I(X) or f ∈ I(Y ))

= V A(f1,a | f ∈ I(X) + I(Y )) by Lemma 5.2

⊇ V A(f1,a | f ∈ I(X ∩ Y )) = Ta(X ∩ Y ).

Definition 5.23. Varieties X and Y are said to intersect transversely at a point a ∈
X ∩ Y provided that Ta(X ∩ Y ) = Ta(X) ∩ Ta(Y ).

Example 5.24. The parabola X = V A(y−x2) and the line Y = V A(y) do not intersect
transversely at the origin since T0X = T0Y = Y , but T0(X ∩ Y ) = 0. The parabola
X = V A(y − x2) and any other line Z = V A(y − c) with c ∈ k∗ intersect transversely.

The notion of transverse intersection is related to smoothness of intersections.

Example 5.25. Consider the “saddle” X pictured below. If we intersect it with a
horizontal hyperplane H most of the time we obtain a smooth curve X ∩H. But if H
goes through the low point of the saddle then the curve X ∩H is singular at this point
where it has a self-intersection.

Bertini’s theorem formalizes the intuition in the preceding example.

Theorem 5.26 (Bertini’s Theorem). Let X ⊆ Pn be a smooth projective variety. Then
a general hyperplane H ⊆ Pnk intersects X transversely and X ∩H is smooth.
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Proof. Without loss of generality assume X is irreducible. Let d = dimX. Consider
the following incidence correspondence

Σ = {(a, H) | TaX ⊆ H} ⊆ X ×Gr(n, n+ 1) ∼= X × Pnk

Since X is smooth TaX ∼= Ad
k and so its closure in projective space is TaX ∼= Pdk. Since

H is Zariski closed and TaX ⊆ H we have TaX ⊆ H. Thus the fiber of π1 : Σ→ X at
a is π−1

1 (a) ∼= H/TaX ∼= Pn−1−d. By the theorem on dimension of fibers Σ is irreducible
of dimension

dim Σ = d+ n− 1− d = n− 1.

Since dim(π2(Σ)) ≤ dim(Σ) = n − 1 < dimPnk we have that π2(Σ) is a proper closed
subset of Pnk . Call its complement U . Then U 6= ∅ is Zariski open.

Claim 5.27. If H ∈ U then X ∩H is smooth and X intersects H transversely.

Lat a ∈ X ∩H. We may replace X by an affine neighborhood of a and H by the
intersection of H with this affine set, which is an affine hyperplane.

Since TaX 6⊆ H we have Ta(X ∩ H) ⊆ TaX ∩ TaH = TaX ∩ H ( TaX. So
dimTa(X ∩H) < dimTaX = d.

On the other hand, by Theorem 5.10 dimTa(X ∩H) ≥ dim(X ∩H) = d− 1. (The
last equality follows by Krull’s Height Theorem.) We conclude that dimTa(X ∩H) =
dim(X ∩H) = d− 1 and thus by Theorem 5.14 that X ∩H is smooth at a.

As for the transverse intersection property, as Ta(X∩H) ⊆ TaX∩TaH = TaX∩H (
TaX we have d − 1 = dimTa(X ∩H) ≤ dimTaX ∩ TaH < TaX = d and so it follows
that dimTaX ∩ TaH = d− 1 and consequently that Ta(X ∩H) = TaX ∩ TaH.
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Chapter 6

Degree and Intersection

Monday, April 14 2025

A polynomial f ∈ k[x] with coefficients in an algebraically closed field factors into
linear factors as

f(x) = c(x− r1)m1(x− r2)m2 · · · (x− rt)mt

where r1, . . . , rt ∈ k are the distinct roots of f and mi is the multiplicity of the root
ri. Then deg(f) = m1 + · · · + mt says that the degree of f is the number of roots
it has, counted with multiplicity. Note that the roots of f can also be viewed as the
intersection points of the graph of f , V A(f(x)−y) ⊆ A2 with the horizontal axis V A(y).

In this chapter we define the degree of a projective variety X ⊆ Pnk . Classically,
the degree is defined to be the number of intersection points of X with a general linear
subvariety of Pn of dimension equal to the codimension of X. In a more algebraic
approach, the degree is defined from the Hilbert polynomial of X. We will indicate
why these two definitions are in fact equal and derive a classical bound on the degree
of a nondegenerate variety (a variety which is not contained in a linear hyperplane of
Pnk).

6.1 Hilbert function and Hilbert polynomial

Definition 6.1. An N-graded ring is one that decomposes as a direct sum of abelian
groups R =

⊕
i≥0Ri so that RiRj ⊆ Ri+j for all i, j ∈ N. In such a decomposition the

elements of Ri are called the homogeneous elements of degree i of R.
An N-graded module over the N-graded ring R is a module that decomposes as a

direct sum of abelian groups M =
⊕

i≥0Mi so that RiMj ⊆ Mi+j for all i, j ∈ N.
In such a decomposition the elements of Mi are called the homogeneous elements of
degree i of M .

Remark 6.2. If R is a graded ring and I is a homogeneous ideal of R then I is a graded
R-module with Ii = I ∩Ri and R/I is a graded R-module with (R/I)i = Ri/Ii.
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Example 6.3. In this section our main example of a graded ring will be the polynomial
ring R = k[X0, . . . , Xn] = kP[Pnk ] with Ri being the k-linear span of the monomials of
degree i. Our main examples of graded modules will be quotient rings R/I with I a
homogeneous ideal of R, e.g. I = I(X) for a projective variety X ⊆ Pnk .

Definition 6.4. If R is an N-graded ring with R0 = k, a field, the Hilbert function of
R is the function hR : N 7→ N ∪ {∞} with values hR(i) := dimk Ri.

Similarly, if M is an N-graded R-module, we define the Hilbert function of M by
hM : N 7→ N ∪ {∞}, hM(i) = dimkMi.

We define the Hilbert series of R or of an R-module M as above by HR(t) =∑
i∈N hR(i)ti and HM(t) =

∑
i∈N hM(i)ti.

Example 6.5. Consider the standard graded ring

R = k[x, y]/(x2, y3) = k︸︷︷︸
R0

⊕
(kx⊕ ky)︸ ︷︷ ︸

R1

⊕
(kxy ⊕ ky2)︸ ︷︷ ︸

R2

⊕
kxy2

︸︷︷︸
R3

.

Then hR(i) =





1 if t = 0

2 if t = 1, 2

1 if t = 3

0 if t ≥ 4

and HR(t) = 1 + 2t+ 2t2 + t3.

The key example of a Hilbert function is that of a polynomial ring.

Example 6.6. Let k be a field, and R = k[X0, . . . , Xn] be a polynomial ring with the
standard grading: deg(Xi) = 1 for each i. To compute the Hilbert function, we need
to compute the size of a k-basis for Ri for each i. We have

Ri =
⊕

a0+···+an=i

kXa0
0 · · ·Xan

n .

We can find a bijection between these monomials and the set of strings that contain
i stars and n bars, where the monomial Xa0

0 · · ·Xan
n corresponds to the string with a0

stars, then a bar, then a1 stars, a bar, etc. Thus, the number of monomials is the
number of ways to choose n bars from i+ n spots, i.e.,

hR(i) =

(
i+ n

n

)
for i ≥ 0.

We observe the binomial function here can be expressed as a polynomial in i for i ≥ 0;
let

Pn(i) =
(i+ n)(i+ n− 1) · · · (i+ 1)

n!
∈ Q[i].

Observe that Pn(i) has −1, . . . ,−n as roots. Then we have

hR(i) =

{
Pn(i) if i ≥ −n
0 if i < 0.
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Note that the two cases overlap for t = −n, . . . ,−1.
Notice that in this example the Hilbert function is eventually (for i ≥ −n)

equal to a polynomial of degree n. This polynomial is called the Hilbert poly-
nomial, so the Hilbert polynomial of R is Pn. Moreover note that R = k[Pnk ] and
dimPnk = n = deg(Pn).

To compute the Hilbert series, notice that the number of monomials of degree i
is equal to the number of ordered tuples (a1, . . . , an) with

∑n
j=0 aj = i. This is the

coefficient of ti in the product

(1 + t+ t2 + · · ·+ ta0 + · · · )(1 + t+ t2 + · · ·+ ta1 + · · · ) · · · (1 + t+ t2 + · · ·+ tan + · · · )

hence

HR(t) = (1 + t+ t2 + · · ·+ ti + · · · )n =
1

(1− t)n+1
.

Notice that the power of (1− t) in the denominator is n+ 1 = dimR.

A very important property of vector space dimension that makes the theory of
Hilbert functions work is its additivity on short exact sequences:

Lemma 6.7. If L,M,N are graded R-modules that form a short exact sequence 0 →
L → M → N → 0 and if the maps in this sequence preserve degrees, then there are
equalities hM(i) = hL(i) + hN(i) for all i ∈ N and

HM(t) = HL(t) +HN(t).

Proof. Because the maps are assumed degree-preserving, the sequence 0→ L→M →
N → 0 restricts for each i ∈ N to an exact sequence of graded pieces 0→ Li →Mi →
Ni → 0. Since Li = Ker(Mi → Ni) by exactness and since the rank of the vectors
space map Mi → Ni is equal to dimkNi by surjectivity, the rank-nullity formula gives

dimkMi = dimk Ker(Mi → Ni) + rank(Mi → Ni) = dimk Li + dimkNi.

Multiplying the above identity by ti and summing over all i ∈ N yields HM(t) =
HL(t) +HN(t).

We can generalize Example 6.6 as follows.

Theorem 6.8 (Hilbert-Serre). Let R = k[X0, . . . , Xn]. The Hilbert series HM(t) of
any finitely generated R-module M is a rational function of the form

HM(t) =
f(t)

(1− t)n+1
with f ∈ Z[t].

Wednesday, April 16 2025
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Proof. By induction on n.
If n = −1 then R = k and M is a finitely generated k-vector space, so that

dimkMi = 0 for i� 0 (specifically for i > the maximum degree of a generator of M).
Thus HM(t) = f(t) for some f ∈ N[t]. (In this case the Hilbert series is a polynomial.)

For the induction step, multiplication by xn on M induces an exact sequence

0→ K →M
xn−→M → N → 0

where K = {m ∈ M | xnm = 0} and N = M/(xn)M . Because K and N are
annihilated by xn they are finitely generated modules over R/(xn) = R0[x1, . . . , xn−1].
The exact sequence above decomposes into a direct sum of exact sequences of vector
spaces of the form

0→ Ki →Mi
xn−→Mi+1 → Ni+1 → 0

Additivity of length yields

dimk(Ki)− dimk(Mi) + dimk(Mi+1)− dimk(Ni+1) = 0

or
hK(i)− hM(i) + hM(i+ 1)− hN(i+ 1) = 0.

In terms of Hilbert series this gives after multiplying by ti+1 and summing up

tHK(t)− tHM(t) +HM(t)−HN(t) = 0

or
(1− t)HM(t) = HN(t)− tHK(t).

Applying the inductive hypothesis for HN(t) and HK(t) and substituting into the above
identity yields the desired conclusion.

Remark 6.9. The expression for HM(t) in the Hilbert-Serre theorem may not be in
reduced form. The reduced form will be

HM(t) =
f(t)

(1− t)d with f ∈ Z[t], f(1) 6= 0 and d ≥ 0. (6.1)

It is a fact best proven in a commutative algebra course that in the reduced form above
d = dim(M) is the Krull dimension of M .

Corollary 6.10. Let R be a standard graded polynomial ring. The Hilbert function
hM(i) of any finitely generated R-module M is given for sufficiently large i by a polyno-
mial PM(i) ∈ Q[i] of degree dim(M)− 1 having leading coefficient f(1)/(dim(M)− 1)!
for f as in (6.1).
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Proof. Use the formula for the reduced Hilbert series

HM(t) =
f(t)

(1− t)d with h ∈ Z[t], f(1) 6= 0 and d = dim(M).

Substituting in the formula above and the “negative binomial” formula of Example 6.6

1

(1− t)d =
∞∑

i=0

(
i+ d− 1

d− 1

)
ti,

where

Pd−1(i) =

(
i+ d− 1

d− 1

)

is a polynomial of degree d− 1 with leading coefficient 1
(d−1)!

, and f(t) =
∑s

j=0 cjt
j we

get

HM(t) =

(
s∑

j=0

cjt
j

)(
∞∑

i=0

Pd−1(i)ti

)
.

For i ≥ deg(f) we see by identifying the coefficient of ti on both sides of the equation
above that

hM(i) =
s∑

j=0

cjPd−1(i− j) =: PM(i)

is a polynomial in i of degree d − 1 with leading coefficient
∑s

j=0 cj

(d−1)!
= f(1)

(d−1)!
6= 0 since

f(1) 6= 0.

Definition 6.11. The Hilbert polynomial of a finitely generated module over a standard
graded polynomial ring is the polynomial PM(i) ∈ Q[i] that agrees with hM(i) for i� 0.

Exercise 6.12. Suppose that I, J are homogeneous ideals in the same polynomial ring
such that Isat = J sat. Then PS/I = PS/J .

Definition 6.13. The multiplicity of a finitely generated module M with dim(M) = d
over a standard graded polynomial ring is e(R) = (d− 1)! times the leading coefficient
of the Hilbert polynomial PM(i).

From Corollary 6.10 we get a quick way of computing multiplicity

Corollary 6.14. The multiplicity of a finitely generated module M with dim(M) = d
and Hilbert series in reduced form

HM(t) =
f(t)

(1− t)d with f ∈ Z[t], f(1) 6= 0 and d ≥ 0.

is e(M) = f(1).
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Example 6.15. The Hilbert polynomial of a standard graded ring R = k[X0, . . . , Xn]

is Pn(i) = (i+n)(i+n−1)···(i+1)
n!

∈ Q[i] as discussed in Example 6.6. The multiplicity of R
is e(R) = n! · 1

n!
= 1.

Example 6.16. Let f ∈ R = k[X0, . . . , Xn] be a homogeneous polynomial of degree

d. From the short exact sequence 0→ R
·f−→ R→ R/(f)→ 0 we obtain

HR/(f)(t) = HR(t)− tdHR(t) =
(1− td)

(1− t)n+1
=

(1 + t+ · · ·+ td−1)

(1− t)n .

Then e(R/(f)) = d.

Exercise 6.17. More generally, if R is a graded ring and f1, . . . , fr is a homogeneous
regular sequence with deg(fi) = di then e(R/(f1, . . . , fr)) = d1 · · · dr · e(R).

6.2 The degree of a projective variety

Definition 6.18. Suppose that X ⊆ Pnk is a projective variety. We define the Hilbert
polynomial PX of X to be the Hilbert polynomial Pk[X0,...,Xn]/IP(X). By Corollary 6.10,
this polynomial has degree d = dimX. We define the degree deg(X) of X to be d!
times the leading coefficient of PX .

Example 6.19. By Example 6.15, deg(P n
k ) = 1.

Example 6.20. Let f be a homogeneous polynomial of degree d. By Example 6.16,
the hypersurface V P(f) has degree deg(V P(f)) = d.

Friday, April 18, 2025

Remark 6.21. The notion of degree is not an isomorphism invariant of a projective va-
riety, but rather depends on the ambient projective space that the variety is embedded
in. For example, we know that the Veronese variety is isomorphic to Pnk , but the degree
of the Veronese variety is not equal to 1 (exercise).

Example 6.22. The Veronese surface (see Examples 2.62) V2,2 ⊆ P5
k is isomorphic

to P2
k so it has dimension 2 and codimension 5 − 2 = 3. The coordinate ring of V2,2

is k[x2, xy, xz, y2, yz, z2] with the degree of each element being half of what it is in
k[x, y, z]. Then PV2,2(i) = PP2(2i) =

(
2i+2

2

)
= (i + 1)(2i + 1) = 2i2 + 3i + 1. Since the

leading coefficient of the Hilbert Polynomial is 2, we have deg V2,2 = 2! · 2 = 4.

Exercise 6.23. The following are true:
1. The degree of a nonempty variety is a positive integer.
2. Suppose that Y = Y1 ∪ Y2 is the union of two projective varieties of dimY1 =

dimY2 = d such that dim(Y1 ∩ Y2) < d. Then deg(Y ) = deg(Y1) + deg(Y2).
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3. If X =
⋃r
i=1Xi is the decomposition of a variety X with dimX = d into distinct

irreducible components then deg(X) =
∑

dim(Xi)=d
deg(Xi).

4. The degree of a point in Pnk is 1.
5. The degree of a finite set of points X ⊆ Pnk is deg(X) = #X.

We now see that the degree of a projective variety can be computed by intersection
with a general linear subspace of complementary dimension. The proof relies on

Lemma 6.24. If V1, . . . Vr are proper subspaces of a vector space V then
⋃r
i=1 Vi 6= V .

and the following improved version of Krull’s height theorem

Lemma 6.25. Suppose that R is a Noetherian commutative ring and ` ∈ R is not
a unit. Then dimR ≤ dimR/(`)R + 1. If ` is not contained in any of the minimal
primes of R then dimR = dimR/(`)R + 1.

Theorem 6.26. Suppose that ∅ 6= X ⊆ Pnk is a projective variety such that all irre-
ducible components of X have dimension d. Then

1. for a general hyperplane H ⊆ Pnk , we have that

(a) H does not contain any irreducible component of X,
(b) X ∩H is equidimensional (all irreducible components have the same dimen-

sion) with dim(X ∩H) = dim(X)− 1
(c) X and H intersect transversely at a general point of every irreducible com-

ponent of X ∩H
(d) deg(X) = e(k[X0, . . . , Xn]/(I(X) + I(H)))

2. If L is a general linear subvariety of Pnk of codimension d (dimL = n− d) then

(a) X ∩ L consists of finitely many points
(b) X intersects L transversely at each intersection point.

If L is a linear space that satisfies (a) and (b) above then deg(X) = #(X ∩ L).

Proof. 1. (a) Consider S = k[X0, · · · , Xn], the homogeneous coordinate ring of X
kP[X] = S/IP(X) and the prime decomposition of the (radical) ideal defining X
IP(X) = P1 ∩ · · · ∩ Pr, where Pi are homogeneous prime ideals in S. Since X 6= ∅
each Pi ( (X0, . . . , Xn).

Claim 6.27. There is a linear form ` ∈ kP[X]1 such that ` 6= 0 and ` is not a zero
divisor.

The statements ` 6= 0 and ` is not a zero divisor are equivalent to ` 6∈ ⋃r
i=1[Pi]1.

(This is an open set of S1). Since each [Pi]1 is a proper vector subspace of S1, Lemma
6.24 applies and gives the existence of ` ∈ S1 \

⋃r
i=1[Pi]1, as desired. Since ` 6∈ Pi we

have that V (`) does not contain V (Pi).
(b) Set H = V P(`). By Lemma 6.25 we have dim k[X ∩H] = dim k[X]/(`)k[X] =

dim k[X]−1, thus all minimal primes of the ideal generated by ` in k[X] have height one.
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Thus X ∩H = VX(`) is equidimensional of codimension one, that is, of dim(X ∩H) =
d− 1.

(c) This follows by an argument similar to that in the proof of Bertini’s Theorem
5.26. Here by “a general point of an irreducible component of X ∩ H” we mean a
smooth point of X that belongs to that component.

(d) We now show that deg(X) = e(k[X0, . . . , Xn]/(I(X) + I(H))) using the short
exact sequence

0→ k[X]
·`−→ k[X]→ k[X]/(`)→ 0.

It follows from here that Hk[X](t) = tHk[X](t) + Hk[X]/(`)(t) so if Hk[X](t) = f(t)
(1−t)d+1 in

reduced form then

Hk[X]/(`)(t) = (1− t)Hk[X](t) =
f(t)

(1− t)d
in reduced form so that deg(X) = f(1) = e(k[X]/(`)). Finally, we have that k[X]/(`) =
k[X0, . . . , Xn]/(I(X) + I(H)).

2. Part 2 follows from 1 by induction on d. Repeating the reasoning in part 1 d
times we obtain a sequence of linear forms `1, . . . , `d so that for L = V P(`1, . . . , `d) we
have

• dim(X ∩ L) = 0 so that X ∩ L is a finite set of points
• X intersects L transversely at each intersection point
• deg(X) = e(k[X0, . . . , Xn]/(I(X) + I(L)).

As a last step we will show I(X ∩ L) = (I(X) + I(L))sat. This holds if and only if for
each a ∈ X ∩ L we have (I(X) + I(L))I(a) = I(a)I(a) = ma in OPn

k
(a).

Since X intersects L transversely at a it means that TaX ∩ TaL = Taa = {a} is a
0-dimensional vector space. This means that

V (f1,a | f ∈ I(X)) ∩ V (f1,a | f ∈ I(L)) = {a}

so V (f1,a | f ∈ I(X) + I(L)) = {a} and thus (f1,a | f ∈ I(X) + I(L)) = I(a) (by linear
algebra because both ideals are generated by linear forms). Then

(I(X) + I(L))I(a)/m
2
a = ma/m

2
a

yields by Nakayama that (I(X) + I(L))I(a) contains a set of minimal generators for ma

so the desired conclusion (I(X) + I(L))I(a) = ma follows.
Now by Exercises 6.12 and 6.23 (5) we have

#(X ∩ L) = deg(I ∩X) = e(k[X0, . . . , Xn]/I(X ∩ L))

= e(k[X0, . . . , Xn]/(I(X) + I(L)) = deg(X ∩ L).

6.2.1 Multiplicity bound

We now give a bound for the multiplicity of a non-degenerate projective variety.
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Theorem 6.28. Suppose that X is a projective subvariety of Pnk and X is not contained
in a linear hyperplane (X is nondegenerate). Then

deg(X) ≥ codim(X) + 1.

Proof. The proof is omitted.

Definition 6.29. A nondegenerate projective varietyX satisfying deg(X) = codim(X)+
1 is called a variety of minimal multiplicity.

Varieties of minimal multiplicity have been classified by Del Pezzo and Bertini. The
smooth ones are projectively equivalent to one of the following

• a quadric hypersurface V P(Q) with Q a homogeneous quadratic polynomial,
• the Veronese surface V2,2 ⊆ P5

k (see Examples 2.62 and 6.22),
• a rational normal scroll.

Moreover a singular variety of minimal degree is a cone over one of the above (same
defining ideal in a larger polynomial ring).

Monday, April 21 2025

6.3 Bezout’s theorem

Definition 6.30. The ruled join of two projective varieties X ⊆ Pnk and Y ⊆ Pmk is
obtained as follows: embed Pnk and Pmk into Pm+n+1 using the maps

ι1 : Pnk → Pm+n+1 ι1([a0 : · · · : an]) = [a0 : · · · : an : 0 : · · · : 0]

ι2 : Pmk → Pm+n+1 ι2([b0 : · · · : bm]) = [0 : · · · : 0 : b0 : · · · : bm]

and define the ruled join J(X, Y ) to be the union of all lines in Pm+n+1 connecting a
point on ι1(X) with a point on ι2(Y ).

The line connecting [u] and [v] is the set of points {[su + tv] | [s : t] ∈ P1}.

We will use the following

Lemma 6.31. If A,B are graded k-algebras then e(A⊗k B) = e(A) · e(B).

Proof. As a graded k-algebra the tensor product decomposes as follows

A⊗k B :=
⊕

`≥0

[⊕

i+j=`

Ai ⊗k Bj

]

whence
hA⊗kB(`) =

∑

i+j=`

dimk Ai ⊗k Bj =
∑

i+j=`

hA(i)hB(j).
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This gives rise to the identity of Hilbert series

HA⊗kB(t) = HA(t) ·HB(t).

Writing the right hand side in reduced form according to Remark 6.9 gives

HA⊗kB(t) =
fA(t)

(1− t)dimA
· fB(t)

(1− t)dimB
=

fA(t)fB(t)

(1− t)dimA⊗kB
.

Here we have used the fact that dim(A ⊗k B) = dimA + dimB. Now recall that
multiplicity is obtained by evaluating the numerator of the Hilbert series in reduced
form. So we conclude

e(A⊗k B) = fA(1)fB(1) = e(A) · e(B).

Proposition 6.32. If X ⊆ Pnk and Y ⊆ Pmk are projective varieties with defining ideals
I(X) in k[X0, . . . , Xn] and I(Y ) in k[Y0, . . . , Ym] and S = k[X0, . . . , Xn, Y0, . . . , Ym],
their join satisfies:

1. J(X, Y ) = ι1(X) ∪ ι2(Y ) ∪ {[a,b] | [a] ∈ X, [b] ∈ Y }
2. J(X, Y ) = V P(I(X)S + I(Y )S) is a projective variety
3. dim J(X, Y ) = dim(X) + dim(Y ) + 1
4. deg J(X, Y ) = degX · deg Y
5. for [a] ∈ X, [b] ∈ Y , we have T[a,b]J(X, Y ) = {[u,v] | u ∈ T[a]X,v ∈ T[b]Y }.

Proof. 1. This follows as the line connecting [a, 0] ∈ ι1(X) for some [a] ∈ X to
[0,b] ∈ ι2(Y ) for some [b] ∈ Y to can be written as

{[sι1(a) + tι2(b)] | [s : t] ∈ P1} = {[a, 0]} ∪ {[0,b]} ∪ {[sa, tb] | s, t ∈ k∗}
= {ι1([a])} ∪ {ι2([b])} ∪ {[sa, tb] | [sa] = [a] ∈ X, [tb] = [b] ∈ Y }.

2. This follows since

V P(I(X)S + I(Y )S) = V P(I(X)S) ∩ V P(I(Y )S)

consists of pairs [a,b] where [a] ∈ X or a = 0 and [b] ∈ Y or b = 0, which is the same
as the description of J(X, Y ) in part 1. (Note that a and b can’t be simultaneously
0.)

3. We know that C(J(X, Y )) = V A(I(X)S + I(Y )S) and by that

V A(I(X)S + I(Y )S) = V A(I(X))× V A(I(Y )) = C(X)× C(Y ).

Thus , dimC(J(X, Y )) = dimC(X)×C(Y ) = (dim(X)+1)+(dim(Y )+1) = dim(X)+
dim(Y ) + 2. Then dim J(X, Y ) = dimC(J(X, Y ))− 1 = dim(X) + dim(Y ) + 1.
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4. We have shown that C(J(X, Y )) = C(X) × C(Y ), thus k[C(J(X, Y ))] ∼=
k[C(X)]⊗k k[C(Y )]. As the coordinate ring of a projective variety and its cone are the
same, this yields k[J(X, Y )] ∼= k[X]⊗k k[Y ].

By Lemma 6.31 we see that

deg J(X, Y ) = e(k[J(X, Y )]) = e(k[X]⊗kk[Y ]) = e(k[X])×e(k[Y ]) = deg(X) ·deg(Y ).

5. For this part note that I(X)S + I(Y )S = I(J(X, Y )) since I(X) and I(Y ) are
written in disjoint sets of variables. This yields that

T[a,b]J(X, Y ) = V (f1,a, g1,b | f ∈ I(X), g ∈ I(Y )) = {[u,v] | u ∈ T[a]X,v ∈ T[b]Y }.

Wednesday, April 23 2025
We are now ready to prove Bezout’s Theorem.

Theorem 6.33 (Bezout’s Theorem - weak form). If X and Y are projective varieties
in Pnk that intersect transversely in finitely many points, then #(X∩Y ) = degX ·deg Y .

Proof. Consider the ruled join J(X, Y ) ⊆ P2n+1
k as introduced in Definition 6.30. Con-

sider the linear space L = V P(X0 − Y0, . . . , Xn − Yn). Then we have

J(X, Y ) ∩ L = {[a, a] | [a] ∈ X ∩ Y }.

Since the sets X ∩ Y are J(X, Y ) ∩ L and clearly in bijection, we have #(X ∩ Y ) =
#(J(X, Y ) ∩ L).

We claim that L and J(X, Y ) intersect transversely. Indeed, we know by Proposi-
tion 6.32 (5) that at [a, a] ∈ J(X, Y ) ∩ L, equivalently [a] ∈ X ∩ Y , the tangent space
is given by

T[a,a]J(X, Y ) = {[u,v] | u ∈ T[a]X,v ∈ T[a]Y }.
and the tangent space to L is L. Consequently

T[a,a]J(X, Y ) ∩ T[a,a]L = {[u,u] | u ∈ T[a]X ∩ T[a]Y }

Since X and Y intersect transversely at [a] we have T[a]X ∩ T[a]Y = T[a]{[a]} = {[a]},
which yields that T[a,a]J(X, Y ) ∩ T[a,a]L = {[a, a]}. We have thus proven the claim
regarding transverse intersection.

Now we see that L satisfies conditions (a) and (b) in part 2 of Theorem 6.26. By
the last sentence of that theorem we conclude

deg J(X, Y ) = #(J(X, Y ) ∩ L).

Putting this together with Proposition 6.32 (4) and the description of J(X, Y ) ∩ L we
have

degX · deg Y = deg J(X, Y ) = #(J(X, Y ) ∩ L) = #(X ∩ Y ).
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Below is an illustration of the proof (with L denoted Λ).

Friday, April 25 2025
Next we want to prove a version of Bezout’s theorem “with mutiplicities”. To do so,

we want to come up with a reasonable way to count the multiplicity of an intersection
point of two varieties. Here we will take this to be the length of a certain local ring at
that point. Be warned that this is not the best definition for intersection multiplicity,
but it is the best that we can do in this class. A better definition (Serre multiplicity)
requires homological algebra.

Recall the following definitions from Math 905:

Definition 6.34. Let R be a ring and M a R-module.
• M is simple if it is nonzero and M has no nontrivial proper submodules.
• A composition series for M of length n is a chain of submodules

M = Mn )Mn−1 )Mn−2 · · ·M1 )M0 = 0

with Mi/Mi−1 simple for all i = 1, . . . , n.
• M has finite length if it admits a finite composition series.
• The length of M, denoted `R(M) is the minimal length n of a composition series

for M .

Example 6.35. If R is a local ring with maximal ideal m then k = R/m is the only
simple module. Am R-module M has finite length if and only if Ass(M) = {m}.

In this case M has length r if and only if it has a simple filtration whose quotients
are r copies of k of and only if M ∼= kr as a k-vector space (but not necessarily as
R-modules), that is, `RM = dimkM .

Recall also from Math 905 the notion of prime filtration and its relationship to
length.
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Definition 6.36. Let R be a Noetherian ring and M a finitely generated R-module.
Then there exists a finite chain of submodules

M = Mn )Mn−1 )Mn−2 · · ·M1 )M0 = 0

such that for each i = 1, · · · , n, there is some Pi ∈ Spec(R) such that Mi/Mi−1
∼= R/Pi.

Such a chain of submodules is called a prime filtration of M .

The following fact is best proved in commutative algebra.

Theorem 6.37. Let R be a Noetherian ring and M a finitely generated R-module with
prime filtration

M = Mn )Mn−1 )Mn−2 · · ·M1 )M0 = 0

such that for each i = 1, · · · , n, there is some Pi ∈ Spec(R) such that Mi/Mi−1
∼= R/Pi.

Then
1. the minimal elements with respect to containment of the list P1, . . . , Pn are the

minimal primes of M
2. for each minimal prime of M , the number of times it appears in the list P1, . . . , Pn

is equal to `RP
(MP ), independent of the choice of filtration.

We prove a theorem relating the multiplicity of a module to the length of its local-
izations.

Theorem 6.38 (Associativity (or additivity) formula for multiplicity). Let R be a
Noetherian graded ring and M a finitely generated graded R-module. Then

e(M) =
∑

P∈Min(M),dim(R/P )=dim(M)

`RP
(MP )e(R/P ).

Proof. Consider a prime filtration of M

M = Mn )Mn−1 )Mn−2 · · ·M1 )M0 = 0.

It breaks up into short exact sequences

0→Mi−1 →Mi →Mi/Mi−1
∼= R/Pi → 0.

The Hilbert polynomial behaves just like the Hilbert function (see Lemma 6.7) so we
have

PMi
= PMi−1

+ PR/Pi
for each 1 ≤ i ≤ n.

Adding all these identities we conclude

PM =
n∑

i=1

PR/Pi
.
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To compute e(M) we determine the leading coefficient of the sum
∑n

i=1 PR/Pi
. Since

the degree of this polynomial is dim(M) − 1 we may ignore all the summands which
have dim(R/Pi) < dim(M) because their Hilbert polynomials have lower degree. Each
P ∈ Min(M) such that dim(R/P ) = dim(M) appears `RP

(MP ) times in the sum. So
the leading coefficient of PM is the same as the leading coefficient of

∑

P∈Min(M),dim(R/P )=dim(M)

`RP
(MP )PR/P ,

which yields the desired identity.

We are now ready to prove an improved version of Bezout’s theorem.

Theorem 6.39 (Bezout’s Theorem - with multiplicities). Let X ⊆ Pnk be a projective
variety of dimension ≥ 1 and let H = V P(f) be a hypersurface that does not contain
any irreducible component of X. Let Z1, . . . , Zs be the irreducible components of X∩H
of highest dimension. Then for R = k[X0, . . . , Xn] we have

s∑

i=1

`

(
R

I(X) + (f)

)

I(Zi)

deg(Zi) = degX · degH.

In particular,
∑s

i=1 deg(Zi) ≤ degX · degH.

Proof. We have that H does not contain any irreducible component of X if and only
if f 6∈ ⋃P∈Ass(R/I(X)) P if and only if f is not a zero-divisor on R/I(X). There is an
exact sequence

0→ R/I(X)
·f−→ R/I(X)→ R/(I(X) + (f))→ 0

which yields
HR/I(X) · (1− tdeg(f)) = HR/(I(X)+(f)).

If we have in reduced form

HR/I(X) =
h(t)

(1− t)d
then

HR/(I(X)+(f)) =
h(t)(1− tdeg(f))

(1− t)d =
h(t)(1 + t+ · · ·+ tdeg(f)−1)

(1− t)d−1

so e(R/(I(X) + (f))) = h(1) · deg(f) = degX · degH.
Finally, by Theorem 6.38 it follows that

e(R/(I(X) + (f))) =
s∑

i=1

`

(
R

I(X) + (f)

)

I(Zi)

deg(Zi).

This finishes the proof.
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Bezout’s original theorem was the particular case of Theorem 6.39 where X and H
are both curves in P2. It states that

Two curves of degrees d1 and d2 in P2 that have no common irreducible
component intersect in at most d1 · d2 points (or exactly d1 · d2 points
counted with multiplicities).

The following contrapositive of Bezout’s theorem is frequently useful.

Corollary 6.40. If two curves of degrees d1 and d2 in P2 intersect in more than
d1 · d2 points (counting multiplicities) then the curves must have a common irreducible
component.

Example 6.41. Unfortunately the formula in Theorem 6.39 no longer holds if we
try to replace the hypersurface H with an arbitrary projective variety Y . Consider
R = k[x, y, z, w, t] and put

X = V P((x, z) ∩ (y, w)) and Y = V P(x− y, z − w) ⊆ P4.

Then X ∩ Y is the point a = [0 : 0 : 0 : 0 : 1] which should have multiplicity 2 as
degX = 2 and deg Y = 1. But

`

(
R

I(X) + I(Y )

)

I([a])

= e

(
R

I(X) + I(Y )

)
= e

(
k[x, y, t]

(x2, xy, y2)

)
= 3.
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Chapter 7

Divisors

Monday, April 28 2025

7.1 Weil divisors and principal divisors

Divisors are a means towards understanding maps from a variety to projective space.
Recall that if X is an irreducible affine variety the field of rational functions on X

is the fraction field of the coordinate ring

k(X) =

{
f

g
| f, g ∈ k[X], g 6= 0

}
.

If X is an irreducible projective variety then k(X) is the homogeneous localization of
the coordinate ring of X at (0) that is

k(X) =

{
f

g
| f, g ∈ k[X] homogeneous of the same degree, g 6= 0

}
.

Example 7.1 (The divisor of zeros and poles). Let X = A1
k. Then every rational

function on A1
k has the form

ϕ =
c(x− z1)a1 · · · (x− zr)ar
(x− p1)b1 · · · (x− ps)bs

∈ k(A1
k) = k(x)

for some c, zi, pi ∈ k and ai, bi ∈ N. We call the zi’s the zeros of ϕ and the pi’s the
poles of ϕ. Then we may encode ϕ as the following formal sum

div(ϕ) = a1{z1}+ · · ·+ ar{zr} − b1{p1} − · · · − bs{ps}

Note that the sets {z1}, · · · , {zr}, {p1}, · · · , {ps} are codimension 1 subvarieties of A1
k.

Now we generalize this.
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Definition 7.2. A prime divisor on a variety X is a codimension 1 irreducible subva-
riety of X. A Weil divisor D on X is a formal Z-linear combination of prime divisors

D =
t∑

i=1

kiDi with ki ∈ Z.

The support of D is the list of prime divisors occurring in D with non-zero coefficient.
The set of all divisors on X form a group Div(X), the free abelian group on the set
of prime divisors of X. The zero element is the trivial divisor D =

∑
0Di with

Supp(0) = ∅.
Example 7.3. In P2, here are some prime divisors: C = V (xy − z2), L1 = V (x), L2 =
V (y). Here are some divisors which are not prime: 2C, 2L1 − L2.

Example 7.4 (The divisor of zeros and poles). Let X = An
k . Then every rational

function on An
k has the form

ϕ =
fa11 · · · farr
gb11 · · · gbss

∈ k(An
k)

for some irreducible polynomials fi, gi ∈ k[An
k ] and ai, bi ∈ N. Then the divisor of ϕ is

div(ϕ) = a1V (f1) + · · ·+ arV (fr)− b1V (g1)− · · · − bsV (gs).

All divisors in An
k are of this form.

In general, on almost any variety X we want to associate to each ϕ ∈ k(X) \ {0}
some divisor, div(ϕ) in a similar way to the divisor of zeros and poles in Example 7.1,
in such a way that the map

k(X)∗ = k(X) \ {0} → Div(X) ϕ 7→ divϕ =
∑

D⊆Xprime

ordD(ϕ) ·D

preserves the group structure on k(X)∗, that is, div(ϕ1ϕ2) = div(ϕ1) + div(ϕ2). Here
by ordD(ϕ) we mean the “order of vanishing” of ϕ along D, which will be defined later.

Definition 7.5. Suppose that X is a quasi-projective variety and Y is a subvariety of
X. Then the local ring OX,Y is defined to be the localization OX,Y = k[U ]IU (Y ), where
U is any affine open subset of X such that Y ∩ U 6= ∅.
Remark 7.6. The ring OX,Y does not depend on a choice of open set.

Definition 7.7. Suppose that R is a local Noetherian domain of dimension 1 with
fraction field K. We define the order of vanishing along R to be

ordR : K∗ → Z ordR(f) = `R(R/(f)) if f ∈ R \ {0}

and we set ordR(f/g) = ordR(f)− ordR(g) for f, g ∈ R both nonzero.
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Lemma 7.8. In the setup of the above definition we have for f, g ∈ K∗

ordR(fg) = ordR(f) + ordR(g)

Proof. It suffices to prove the first equality for f, g ∈ R both nonzero. This follows
from the short exact sequence

0→ R/(f)
·g−→ R/(fg)→ R/(g)→ 0

since length is additive on short exact sequences.

Definition 7.9. Let X be an irreducible quasi-projective variety and let ϕ ∈ k(X)∗.
The order of vanishing of ϕ along a prime divisor D is ordD(ϕ) := ordOX,D

(ϕ).

Definition 7.10. Let X be an irreducible quasi-projective variety and let ϕ ∈ k(X)∗.
The principal Weil divisor associated to ϕ is the Weil divisor

div(ϕ) =
∑

D⊆Xprime

ordD(ϕ) ·D

Theorem 7.11. Let X be an irreducible quasi-projective variety. The sum defining
div(ϕ) in Definition 7.10 is finite. Moreover the function k(X)∗ = k(X) \ {0} →
Div(X) ϕ 7→ divϕ is a group homomorphism.

Proof. Since every quasi-projective variety has an open cover by a finite number of
affine open sets, we reduce to the case when X is affine. Write ϕ = f

g
where f, g ∈ k[X].

Now VX(f) has only a finite number of irreducible components, and ordD(f) = 0 unless
D is an irreducible component of VX(f). The same statement holds for g, and since
ordD(ϕ) = ordD(f) − ordD(g), we have that the only D that can appear in the sum
are irreducible components of VX(f) or of VX(g).

The fact that div(ϕ1ϕ2) = div(ϕ1) + div(ϕ2) follows from Lemma 7.8.

Wednesday, April 30
One problem with our Definition 7.9 of order is that we would like ordD(ϕ) to be

positive if and only if ϕ is a regular function. But this need not be so.

Example 7.12. Consider X = U = V (x3 − y2), ϕ = y/x and D = {(0, 0)}. Then

ordD(y/x) = ordD(y)− ordD(x) = 3− 2 = 1

but y/x is not a regular function on X. (However it is the “square root” of the regular
function x as (y/x)2 = x in k[X].

The problem here turns out to be that the coordinate ring of the above curve is
not normal, that is, integrally closed in its coordinate field. Normal rings of dimension
one are very nice.
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Definition 7.13. A discrete valuation ring (DVR) is a Noetherian local domain R
with any of the following equivalent properties:

1. R is regular of dimension 1.
2. R is normal (integrally closed in its fraction field) of dimension 1.
3. R is a UFD with one irreducible element, π.
4. The maximal ideal of R is principal, generated by a uniformizer π.
5. Every nonzero ideal of R is (πt) for some t ∈ N.

Definition 7.14 (Valuation). Suppose that K is a field. A valuation ν of K is a map
ν : K∗ → G to a totally ordered group G such that

1. ν(fg) = ν(f) + ν(g) for all f, g ∈ K∗,
2. ν(f + g) ≥ min{ν(f), ν(g)} for all f, g ∈ K∗.

The valuation ring of ν is V = {f ∈ K∗ | ν(f) ≥ 0} ∪ {0}.
Definition 7.15. If R is a DVR with uniformizer π then any f ∈ R can be written as
f = unit · πr for some r ∈ N. We define a valuation νR(f) = r. More formally

νR(f) = min{t | f ∈ (π)t}.
We extend this by

νR

(
f

g

)
= ν(f)− ν(g), equivalently

f

g
= unit · πν(

f
g ).

Clearly the elements of positive valuation are exactly the non-zero elements of R.
Notice that νR(f) = ordR(f) as for f = unit ·πr we have `(R/(f)) = `(R/(πr)) = r

with composition series 0 = (πr) ( (πr−1) ( · · · ( (π1) ( (π0) = R/(f).

Definition 7.16. Let X be a quasi-projective variety. We say X is normal if any of
the following equivalent conditions hold:

1. For all points a ∈ X, the local ring OX,a is normal.
2. For all subvarieties Y ⊆ X, OY,X is normal.
3. For every open affine U ⊆ X, k[U ] = OX(U) is normal.

Warning: most sources only define Weil divisors in normal varieties. If X is a
normal variety we can rewrite the definition of a principal divisor as follows

div(ϕ) =
∑

D⊆Xprime

νD(ϕ) ·D,

where νD(ϕ) = νOX,D
(ϕ) is the valuation described in Definition 7.15.

We see this coincides with Examples 7.1, 7.4 as An
k is normal and we have for

any f ∈ k[x1, . . . xn] with irreducible factorization f = fa11 · · · farr that in the DVR
OAn

k ,V (fi) = k[x1, . . . , xn](fi), the element f = unit · faii so νV (fi)f = ai.

Definition 7.17. We say a Weil divisor
∑t

i=1 kiDi with Di prime divisors is effective
if each ki ≥ 0. The set of effective divisors is denoted Eff(X) and it is a cone (closed
under taking N-linear combinations).
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Theorem 7.18. Let ϕ be a nonzero rational function on an irreducible normal variety
X. Then ϕ is regular on X if and only if divϕ is effective.

Proof. Say ϕ ∈ k(X)∗ and divϕ is effective. It suffices to check ϕ |U , where U is affine
open in X, is regular. On U , we have that k[U ] is normal and ϕ ∈ k(U) = k(X)
satisfies ordD(ϕ) ≥ 0 for all prime divisors D that meet U . It follows that νOD,X

≥ 0
and so ϕ belongs to in the DVR OD,X . Then

ϕ ∈
⋂

D prime in U

OD,X = k[U ]

because a normal ring is the intersection of its localizations at height 1 primes.

7.2 The divisor class group

We have established in Theorem 7.11 that there is a group homomorphism k(X)∗ →
Div(X), ϕ 7→ div(ϕ). The image of this homomorphism is the subgroup of principal
divisors of X, denoted P (X).

Definition 7.19. The class group of an irreducible variety X is the quotient group

Cl(X) =
Div(X)

P (X)
.

As Div(X) is an abelian group, so is Cl(X). For D,D′ ∈ Div(X) we write D ∼ D′

if D −D′ ∈ P (X), equivalently D and D′ are equal in Cl(X). This is an equivalence
relation called linear equivalence of divisors.

Example 7.20 (Class group of An
k). Cl(An

k) = 0
Any prime divisor D is given as D = V (P ) where P is a prime ideal of height one.

Take 0 6= f ∈ P . Since P is prime some irreducible factor of f must be in P , so we
may assume f is irreducible and so (f) is prime. Since (0) ( (f) ⊆ P and htP = 1
we conclude that P = (f). Thus any prime divisor is the vanishing set of a principal
ideal.

Now take an arbitrary divisor
∑r

i=1 aiV (fi) − (
∑s

i=1 biV (gi)) for some fi, gi irre-
ducible elements and ai, bi non-negative integers. Note that

div

(
fa11 · · · farr
gb11 · · · gbss

)
=

r∑

i=1

aiV (fi)− (
s∑

i=1

biV (gi))

so Div(An
k) = P (An

k) and thus Cl(An
k) = 0.

Remark 7.21. The same argument as above shows that if X is an affine variety such
that k[X] is a UFD, then Cl(X) = 0.
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Example 7.22 (Class group of Pnk). Cl(Pnk) ∼= Z is generated by the equivalence class
of a hyperplane.

Claim 7.23. There is a surjective group homomorphism

deg : Div(Pnk)→ Z, deg

(
s∑

i=1

kiDi

)
=

s∑

i=1

ki deg(Di),

where deg(Di) is the degree of a prime divisor Di as a projective variety. This map is
a group homomorphism by definition.

By an argument similar to the previous example, each prime divisor D in Pnk is
given by D = V (F ) for some irreducible homogeneous polynomial F ∈ k[X0, . . . , Xn].
Then we know deg(D) = deg(F ) by Example 6.16. In particular if H is a hyperplane
this gives deg(H) = 1. Now deg(nH) = n · 1 = n for any n ∈ Z and so the map above
is surjective.

We compute the kernel of the above map. Say
∑r

i=1 aiV (Fi) − (
∑s

i=1 biV (Gi)) ∈
Ker(deg). Then

∑r
i=1 ai deg(Fi)− (

∑s
i=1 bi deg(Gi)) = 0 and so

ϕ =
F a1

1 · · ·F ar
r

Gb1
1 · · ·Gbs

s

∈ k(X)∗

because the numerator and denominator are homogeneous of the same degree. This
shows that Ker(deg) = P (Pnk). By the first isomorphism theorem we deduce that
Cl(Pnk) = Div(Pnk)/P (Pnk) ∼= Z.

The method of the previous example applied to the bihomogeneous coordinate ring
of Pnk × Pmk proves the next result.

Example 7.24 (Class group of Pnk×Pmk ). Cl(Pnk×Pmk ) ∼= Z×Z is generated by a prime
divisor L1 of bidegree (1, 0) and a prime divisor L2 of bidegree (0, 1). The divisor L1

is equal to H1 × Pmk , where H1 is a hyperplane in Pnk , and L2 = Pnk ×H2, where H2 is
a hyperplane in Pmk .

Note that in both Examples 7.22 and 7.24 the class group is isomorphic to the
grading group for the homogeneous coordinate ring. This generalizes to all normal
toric varieties.

Monday, May 5

Example 7.25. Define an elliptic curve to be a degree three smooth, irreducible curve
X in P2

k. Each prime divisor on X is a point, so we can define a map for ai ∈ X, ki ∈ Z

deg : Div(X)→ Z, deg

(
s∑

i=1

kiai

)
=

s∑

i=1

ki.
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Let Div0(X), P0(X) denote the elements of Div(X), respectively of P (X) of degree 0.
Since P0(X) is a subgroup of Div0(X) we can and set

Cl0(X) =
Div0(X)

P0(X)
.

Fix a point a0 ∈ X.
Claim: Cl0(X) is generated by the classes of {a− a0 | a ∈ X}.
Indeed, any element of Div0(X) is of the form

∑s
i=1 kiai with

∑s
i=1 ki = 0. Then

we may rewrite

s∑

i=1

kiai =
s∑

i=1

kiai −
s∑

i=1

kia0 =
s∑

i=1

ki(ai − a0).

This proves the claim.
We define a binary operations ⊕ and a unary operation 	 on the set of points of X

as illustrated in the pictures below. Specifically for two points a, b ∈ X we consider the
unique line L1 passing through a and b (if a = b then we consider the tangent line to
X at a). This line intersects X in a unique third point c by Bezout (since deg(X) = 3
and the degree of the line is 1 they intersect in 3 points, counted with multiplicity).
The line L2 through a0 and c intersects X in a unique third point that we denote a⊕ b.

Consider the tangent line to X at a0 (it is indeed a line, since X is smooth). Since
this tangent line intersects X at a0 with multiplicity two there is another point (could
be a0 as well) where the tangent line intersects X. Call it d. For a point a ∈ X the
line through a and d intersects X at a third point we denote 	a.

122 Andreas Gathmann

a�b

aa

a0 a0

b

X X

 a

Note that, using this geometric description, the operation � could also be defined in a completely
elementary way, without referring to the theory of divisors. However, it would then be very difficult
to show that we obtain a group structure in this way, in particular to prove associativity.

Exercise 15.5. Let X and Y be two distinct elliptic curves in P2, and assume that they intersect in 9
distinct points a1, . . . ,a9. Prove that every elliptic curve passing through a1, . . . ,a8 also has to pass
through a9.
Can you find a stronger version of this statement that applies in the case when the intersection
multiplicities in X \Y are not all equal to 1?

Example 15.6 (Elliptic Curve Cryptography). There is an interesting application of the group struc-
ture on an elliptic curve to cryptography. The key observation is that “multiplication is easy, but
division is hard”. More precisely, assume that we are given a specific elliptic curve X and a base
point a0 2 X for the group structure.

(a) Given a2 X and n2N, the n-fold addition n�a := a�·· ·�a can be computed very quickly,
even for very large n (think of numbers with hundreds of digits):

• By repeatedly applying the operation a 7! a�a, we can compute all points 2k�a for
all k such that 2k  n.

• Now we just have to add these points 2k� a for all k such that the k-th digit in the
binary representation of n is 1.

This computes the point n�a in a time proportional to logn (i. e. in a very short time).
(b) On the other hand, given two sufficiently general points a,b 2 X it is essentially impossible

to compute an integer n 2 N such that n� a = b (in case such a number exists). Note that
this is not a mathematically precise statement — there is just no known algorithm that can
perform the “inverse” of the multiplication of (a) in shorter time than a simple trial-and-error
approach (which would be impractical for large n).

Let us now assume that Alice and Bob want to establish an encrypted communication over an inse-
cure channel, but that they have not met in person before, so that they could not secretly agree on
a key for the encryption. Using the above idea, they can then agree (publicly) on a ground field K,
a specific elliptic curve X over K, a base point a0 2 X , and another point a 2 X . Now Alice picks
a secret (very large) integer n, computes n� a as in (a), and sends (the coordinates of) this point
to Bob. In the same way, Bob chooses a secret number m, computes m� a, and sends this point to
Alice.
As Alice knows her secret number n and the point m�a from Bob, she can then compute the point
mn�a = n� (m�a). In the same way, Bob can compute this point as mn�a = m� (n�a) as well.
But except for the data of the chosen curve the only information they have exchanged publicly was
a, n� a, and m� a, and by (b) it is not possible in practice to recover n or m, and hence mn� a,
from these data. Hence Alice and Bob can use (the coordinates of) mn� a as a secret key for their
encrypted communication.

Exercise 15.7. Let X be an elliptic curve of the form

X = {(x0 :x1 :x2) : x2
2x0 = x3

1 +lx1x2
0 + µx3

0} ⇢ P2

for some given l ,µ 2 K (it can be shown that every elliptic curve can be brought into this form
by a change of coordinates if the characteristic of K is not 2 or 3). Pick the point a0 = (0:0 :1) as

Set f : X → Cl0(X), f(a) = a− a0. We verify that

f(a⊕ b) = f(a) + f(b)

f(	a) = −f(a).

Indeed, setting Li = V (`i) the principal divisors div(`1/`2) and div(`3/`4) ∈ P0(X)
yield the following relations in Cl(X)

div(`1/`2) = a+ b+ c− (c+ a0 + a⊕ b) ∼ 0

div(`3/`4) = 2a0 + d− (a+	a+ d) ∼ 0.
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From the first equation we have

a+ b ∼ a0 + a⊕ b or (a− a0) + (b− a0) ∼ a⊕ b− a0

and from the last equation we have

2a0 − a+	a or − (a− a0) ∼ 	a− a0,

as desired.
Claim: the points of X form an abelian group with respect to ⊕, where the additive

identity is a0 and the additive inverse is given by 	. This follows since f preserves the
operation and Cl(X) is an abelian group. In particular, showing associativity holds for
⊕ is very hard with the geometric definition. But we can bypass this by applying f
and using that + is associative in Cl(X) instead.

It turns out the map f above is injective (this is non-trivial to show). The first
claim showed it is also surjective, Therefore, there is a group isomorphism

(X,⊕) ∼= Cl0(X).

We now want to see how to relate divisor class groups.

Proposition 7.26. Let X be a normal quasi-projective irreducible variety, Z a proper
subvariety of X and U = Z \X. Then

1. there is a surjective homomorphism

p : Cl(X)→ Cl(U), p(
t∑

i=1

ciDi) =
∑

Di∩U 6=∅

ci(Di ∩ U),

where Di are prime divisors in X

2. if codim(Z) ≥ 2 then p is an isomorphism

3. if Z is irreducible of codim(Z) = 1 then there is an exact sequence

Z 17→Z−−−→ Cl(X)
p−→ Cl(U)→ 0.

Proof. 1. If Y is a prime divisor on X, then Y ∩ U is either empty or a prime divisor
on U . If ϕ ∈ k(X)∗, and divϕ =

∑
ciYi, tnen considering ϕ|U as a rational function

on U , we have divϕ|U =
∑

Yi∩U 6=∅ ciYi so indeed we have a well-defined homomorphism
p : ClX → ClU as described in the statement.

It is surjective because every prime divisor of U is the intersection of its closure in
X with U .

2. The groups DivX and ClX depend only on subsets of codimension 1, so remov-
ing a closed subset Z of codimension 2 doesn’t change anything.

3. The kernel of p consists of divisors whose support is contained in Z. If Z is
irreducible, the kernel is just the subgroup of ClX generated by 1 · Z.
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Example 7.27. Let Z be an irreducible hypersurface of degree d in Pn. Then Cl(Pnk \
Z) ∼= Z/d

Indeed, from the previous proposition we have an exact sequence

Z 17→Z−−−→ Cl(Pnk)
p−→ Cl(U)→ 0.

We know from Example 7.22 that Cl(Pnk) ∼= Z and under this isomorphism Z 7→
deg(Z) = d. So the exact sequence above becomes

Z 1 7→d−−→ Z p−→ Cl(U)→ 0.

whence Cl(U) ∼= Z/d.

Wednesday, May 7

Example 7.28. Let B be the blow-up of P2 at a point a. Then Cl(B) ∼= ZH ⊕ ZE
where H is the class of a hyperplane in P2 and E is the exceptional set.

First, recall that there is a canonical regular map π : B → P2
k and that the excep-

tional set is E = π−1(a). It turns out that E is a prime divisor and in fact E ∼= P1.
The map π induces an isomorphism π|B\E : B\E → P2

k \{a}, therefore Cl(B\E) ∼=
Cl(P2

k \ {a}) = Cl(P2
k) = Z · H where H is any hyperplane in P2

k. Here we used that
codim{a} = 2 and part 2 of Proposition 7.26.

By Proposition 7.26 we have an exact sequence

Z 17→E−−−→ Cl(B)→ Cl(B \ E)→ 0, that is, Z 1 7→E−−−→ Cl(B)→ Z ·H → 0.

Since the last term is free this sequence splits and we have Cl(B) = Z ·E + Z ·H. We
will see that this is a direct sum later.

7.3 27 lines

7.3.1 Intersection product on surfaces

The goal of this section is to set up a basic intersection theory for curves on surfaces.
From now on let S be a smooth projective surface. We know that Cl(X) is an abelian
group, but we wish to endow it with a sort of multiplication.

Given two curves C,D ⊂ S, that is, efective divisors on S, we’d like to define the
product C ·D. We require the product to satisfy the following conditions:

C ·D = #(C ∩D) provided C and D meet transversely (7.1)

in finitely many points

(C1 + C2) ·D = C1 ·D + C2 ·D for all C1, C2, D ∈ Cl(S) (7.2)

C ·D = C ′ ·D,C ·D = C ·D′ provided C ∼ C ′, D ∼ D′. (7.3)

One can prove (but we won’t):
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Theorem 7.29. There is a unique Z-bilinear pairing Cl(S) × Cl(S) → Z satisfying
the above three conditions.

Example 7.30. Let B be the blow-up of P2
k at a point. This is a smooth surface. We

know by Example 7.28 that Cl(B) = Z · E + Z ·H.
We compute H · E. We can find a line H ′ ⊆ P2

k that does not pass through the
point a that was blown up. Then E ∩ H ′ = 0 and since H ∼= H ′ it follows by (7.3)
that H · E = ∅.

We compute H · H. Pick a line H ′ ⊆ P2
k such that H ′ is not the same line as H.

Then H ·H ′ = 1 since any two distinct lines in P2
k intersect in exactly one point. Since

H ∼= H ′ we also have H2 = H ·H = H ·H ′ = 1 by (7.3).
Finally we compute E · E. Take L,L′ to be lines through a. Then π−1(L) =

E+D, π−1(L′) = E+D′ where D,D′ are the strict transforms of L,L′. If we pick L,L′

to be distinct lines then D,D′ will be disjoint in B. So D ·D′ = 0. Since L ∼ H ∼ L′

we have

(H−E) ·(H−E) = 0 ⇐⇒ H2−2H ·E+E2 = 0 ⇐⇒ 1−0+E2 = 0 ⇐⇒ E2 = −1.

This is surprising! We can have negative intersection products.
Now we finish the proof that Cl(B) = Z ·E⊕Z ·H (direct sum). Suppose aH = bE

for some a, b ∈ Z. Then

a2 = a2H2 = (aH)2 = (bE)2 = b2E2 = −b2.

But if a2 = −b2 in Z, then we must have a = b = 0.

Friday, May 9

7.3.2 27 lines

Earlier we proved that a general cubic surface contains a finite number of lines. Now
we show

Theorem 7.31. A smooth cubic surface contains exactly 27 lines.

Lemma 7.32. The blow-up of P2
k at 6 sufficiently random points is a smooth cubic

surface.

Proof. Say the homogeneous coordinate ring of P2
k is R = k[X0, X1, X2]. The vector

space of homogeneous polynomials of degree 3 in R is 10-dimensional and a typical
element has the form

F = c1X
3
0 + · · ·+ c10X

3
2 .

The condition that F vanishes at a point a gives a linear equation (in variables
c1, . . . , c10)

c1a
3
0 + · · ·+ c10a

3
2 = 0.
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The condition that F vanishes at six points then yields a linear system of 6 equations
in 10 unknowns. If the points are sufficiently random, the solution space has dimension
10− 6 = 4. In other words we have computed that I({p1, . . . , p6)3 = 4.

Let F1, F2, F3, F4 be a basis for the vector space I({p1, . . . , p6)3 = 4. We can use
this to define a rational (i.e. not everywhere defined) map

φ : P2
k 99K P3

k, φ(a) = [F1(a) : F2(a) : F3(a) : F4(a)]

This map is not defined at V P(F1, F2, F3, F4), which turns out to be precisely the six
points p1, . . . , p6.

If we construct the blowup X = Blp1,...,p6P2
k then there is a canonical map

π : X → P2
k

and the previous rational map φ then extends to a regular map

φ̃ : X → P3
k

The image of φ̃ : is a surface S ⊆ P3 isomorphic to X. As X is smooth, so is S.

Claim 7.33. S is a cubic surface.

We only need to check that H2 = 3 on S, where H is the class of a hyperplane on P3
k.

Intuitively, H represents a curve on S obtained by intersecting S with a hyperplane,
and H2 represents the number of points on S that we get when we intersect this curve
with another hyperplane.

To compute H2, we work on the surface X. A hyperplane section of S, H =
V P(aX0+bX1+cX2+dX3) is the image of a cubic curve C in X, specifically H = φ(C),
where C = π−1(aF1 + bF2 + cF3 + dF4). Such a curve has class C = 3L − E1 − E2 −
E3 − E4 − E5 − E6, where L is the class of a line in P2

k.
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The intersection product on X is as follows:





L2 = 1

L · Ei = 0 ∀1 ≤ i ≤ 6

Ei · Ej = 0 ∀1 ≤ i 6= j ≤ 6

E2
i = −1 ∀1 ≤ i ≤ 6.

It then follows that

H2 = (3L− E1 − E2 − E3 − E4 − E5 − E6)2 = 3

so in fact S is a smooth cubic surface.

We will take the following converse for granted:

Lemma 7.34. Any smooth cubic surface can be obtained as the blow-up of P2
k at 6

sufficiently random points.

Lemma 7.35. There are at least 27 lines on S.

Proof. How can one recognize a line on S? We see that ` is a line on S if and only if
` ·H = 1 as ` ·H = deg(`). Say φ−1(`) = aL+ b1E1 + b2E2 + b3E3 + b4E4 + b5E5 + b6E6

in Cl(X) and recall that φ̃−1(H) = 3L− E1 − E2 − E3 − E4 − E5 − E6. Then

1 = ` ·H = φ̃−1(`) · φ̃−1(H)

= (aL+ b1E1 + b2E2 + b3E3 + b4E4 + b5E5 + b6E6) · (3L− E1 − E2 − E3 − E4 − E5 − E6)

= 3a+ b1 + b2 + b3 + b4 + b5 + b6 or
6∑

i=1

bi = 1− 3a.

A few solutions are

φ̃−1(`) = Ei

φ̃−1(`) = L− Ei − Ej
φ̃−1(`) = 2L− Ei1 − Ei2 − Ei3 − Ei4 − Ei5 .

There are 6 solutions of the first kind,
(

6
2

)
= 15 solutions of the second kind, 6

solutions of the third kind, for a total of 27 solutions. The curves corresponding to
these solutions on X are

• the exceptional divisors E1, . . . , E6

• the lines connecting the points pi and pj
• the (unique) conic passing through five of the six points p1, . . . , p6.

It turns out the 27 lines found above are the only lines.
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Lemma 7.36. There are at most 27 lines on S.

Proof. To justifies this requires knowing a second equation satisfied by a, b1, . . . , b6

which is called the adjunction formula

2g − 2 = `(`−H), where g = 0 is the genus of `.

So `2 = −1, that gives φ̃(`)2 = −1, i.e,

a2 − b2
1 − b1

2 − b2
3 − b2

4 − b2
5 − b2

6 = 1 or
6∑

i=1

b2
i = a2 − 1.

By Cauchy Schwartz, we have (
∑6

i=1 bi)
2 ≤ 6

∑6
i=1 b

2
i , which gives (1−3a)2 ≤ 6(a2−1),

and ultimately implies a < 3. Once we know that a ∈ {0, 1, 2} it is easy to check that
the solutions listed above are the only solutions.
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cotangent space, 85
cuspidal cubic, 8, 11

degree, 98

dimension of topological space, 59
discrete valuation ring, 111
distinguished open set, 20
distinguished open set in Pnk , 36
dominat, 26

effective divisor, 111
embedding dimension, 86
equivalence of categories, 15

finite map of affine varieties, 63
functor, 15

general point, 66
graded module, 93
graph of a morphism, 54
Grassmannian variety, 47

Hilbert function, 94
Hilbert polynomial, 97
Hilbert polynomial of projective

variety, 98
Hilbert series, 94
homogeneous coordinate ring, 39
homogeneous ideal, 30
homogenization, 33
hyperplane, 5
hypersurface, 5

ideal generated by a set, 6
irreducible, 18
irreducible components, 19
irrelevant ideal, 34
isomorphism of affine varieties, 9
isomorphism of projective varieties, 38

121



Jacobian criterion, 88
Jacobian matrix, 88, 89
join, ruled, 101

linear change of coordinates, 39

minimal multiplicity, 101
morphism of projective varieties, 38
morphism of quasi-projective varieties,

50
multiplicity, 97

nodal cubic, 3
Noether normalization, 62
noetherian topological space, 19
normal variety, 111

open set, 17
order of vanishing of a function, 110

Plücker map, 48
prime divisor, 109
principal divisor, 112
prinicpal divisor, 110
product of varieties, 51
projective closure, 34
projective hyperplane, 31
projective space, 28
projective variety, 31
pullback, 11
pullback of rational map, 26

quasi-affine variety, 50
quasi-compact, 21
quasi-projective is locally affine, 51
quasi-projective variety, 50

radical of an ideal, 6
rational function, 22
rational functions field, 64
rational map of affine varieties, 26
Rees algebra, 81

regular at a point, 22
regular function, 7
regular function on projective variety,

37
regular local ring, 88
regular map of projective varieties, 38
regular map of quasi-projective

varieties, 50
regular map of varieties, 9
regular on an open set, 22
ring of regular functions, 7

saturation, 34
section, 25
Segre embedding, 41
Segre variety, 41
separated variety, 52
sheaf of regular functions, 25
singular locus, 90
smooth, 88
stalk, 25
strict transform, 75

tangent cone, 86
tangent space, 84
topology, 17
transverse intersection, 91
twisted cubic, 5
twisted cubic, projective, 33

upper-semicontinuous, 65

Veronese embedding, 44
Veronese ring, 44
Veronese variety, 44

Zariski closure, 13
Zariski topology on An, 17
Zariski topology on Pnk , 36
Zariski topology on affine variety, 17
Zariski topology on projective variety,

36
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