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Aug. 26, 2013

⋗ (Handwritten)

Aug. 28, 2013

⋗ Ideals and Varieties: Let R be a commutative ring.

⋗ Defn: A subset I ⊆ R is called an ideal if the following hold

1. 0 ∈ I1

2. f, g ∈ I implies that f + g ∈ I

3. f ∈ I, r ∈ R implies rf ∈ I.

⋗ Defn: Let f1, ..., fs ∈ R. The set (f1, ..., fs) = {
∑s

i=1 rifi : ri ∈ R} is the ideal generated by {f1, ..., fs}.

⋗ Defn: Let I be an ideal of R. We say that I is finitely generated if there are f1, ..., fs ∈ R such that
I = (f1, ..., fs).

⋗ Notation:2 R = k[x1, ...., xn] is the polynomial ring with coefficients in k (where k is a field that is sometimes
algebraically closed). Also, let An = kn = {(a1, ..., an) : ai ∈ k} represent affine space.

⋗ Defn: Let I = (f1, ..., fs) be an ideal in R. Define the affine variety corresponding to I as V(I) = {a =
(a1, ..., an) : f1(a1, ..., an) = · · · = fs(a1, ..., an)}.

⋗ Examples:

1. (Twisted Cubic) I = (y − x2, z − x3) ⊆ R = k[x, y, z]. In this case,3

TC := V(I) = {a = (a1, a2, a3) : a2 − a21 = a3 − a31 = 0} = {(a1, a21, a31) : a1 ∈ k}.

2. Hypersurfaces: V((f)) is called a hypersurface.

⋗ Property of V(−): Inclusion reversing: I ⊆ J =⇒ V(J) ⊆ V(I). For example, (y−x2) ⊆ (y−x2, z−x3) will
imply that V (TC) ⊆ V(y−x2) =: V1 (the latter is a parabolic cylinder). Also, since (z−x3) ⊆ (y−x2, z−x3)
and so TC ⊆ V(z − x3) =: V2 (also some kind of cylinder). In fact, TC = V1 ∩ V2.

⋗ Defn: Given an affine variety V ⊆ An, we define the ideal corresponding to it

I(V ) = {f ∈ R = k[x1, ..., xn] : f(a1, ..., an) = 0∀(a1, ..., an) ∈ V }.

⋗ Rmk: I(V ) is also inclusion reversing: V ⊆ W ⇐⇒ I(V ) ⊇ I(W ). Furthermore, V = W ⇐⇒ I(V ) = I(W ).

⋗ Rmk: I(V(f1, ..., fs)) ⊇ (f1, ..., fs). (Prove this!)

⋗ To see that this inclusion can be strict, consider the following example: (in R = C[x, y], A2), consider
V(x2, y2) = {(0, 0)} and I(V(x2, y2)) = I({(0, 0)}) = (x, y).

⋗ Problems:

1. Ideal description:

- Is every ideal I ⊆ R finitely generated? (Hilbert Basis Theorem)

- How about a “nice” set of generators?

2. Ideal membership: Given some ideal I = (f1, ..., fs) and polynomial f ∈ R, is f ∈ I?

3. Ideals/Varieties: Given “nice” sets of generators for two ideal I and J , can we find sets of generators for
I ∩ J or I : J or Isat?4

1This ensures that I ̸= ∅.
2For the first half of this class
3Reference “numerical semigroup rings.”
4Isat is the saturation of the ideal I.



Peder Thompson’s Notes 918 Computational Algebra - Alexandra Seceleanu 2

4. Implicitization / Elimination: Given a variety V ⊆ An defined parametrically, i.e., {xi = gi(y1, ..., ym}ni=1,
can we find I(V ) (equivalently, find relations between the xi’s that don’t involve the yi’s).

⋗ Monomial Orders: A monomial xα = xα1
1 · · ·xαn

n ∈ R = k[x1, ..., xn], Zn
≥0.

⋗ Defn: A monomial order on R is a binary relation “>” on the set of monomials of R satisfying:

1. > is a total ordering (any two monomials are comparable),

2. If xα > xβ =⇒ xαxγ > xβxγ for any γ ∈ Zn
≥0,

3. > is a well-ordering (every nonempty subset of monomials has a smallest element under >).

Sep. 4, 2013

⋗ Defn: (From last time...) A monomial order on R is a binary relation “>” on the set of monomials of R
satisfying:

1. > is a total ordering (any two monomials are comparable),

2. If xα > xβ =⇒ xαxγ > xβxγ for any γ ∈ Zn
≥0,

3. > is a well-ordering (every nonempty subset of monomials has a smallest element under >).

⋗ Rmks:

- (3) is equivalent to (3’): Every strictly descending sequence of monomials must terminate.

- (3) is equivalent to (3”): > is a global ordering, i.e., xα > 1 for all α ̸= (0, ..., 0).

- (3) is equivalent to (3”’): > refines the partial order given by divisibility, i.e., xβ |xα =⇒ xβ < xα.

⋗ Rmk: There is another natura partial order on R given by degree:

deg(xα) =

n∑
i=1

αi = |α|.

Some monomial orderings refine the degree order, some don’t.

⋗ All examples below depend on an ordering of the the variables: x1 > x2 > · · · > xn.

⋗ Examples:

1. Lex: xα >Lex xβ ⇐⇒ (defn) in first coordinate where α and β differ, we have αi > βi. Equivalenetly, the
leftmost non-zero entry of α− β must be positive. For example, xy2 >Lex y3z4, since the left has (1, 2, 0)
and the right has (0, 3, 4). Note that this does not refine the degree order (since the one on the left has
degree 3, the one on the right has degree 7). For another example, xy2 >Lex xy.

Note that this is similar to the “phonebook ordering,” but is only identical when restricted to monomials
of a fixed degree.

2. GrLex: We say xα >GrLex xβ ⇐⇒ deg(xα) > deg(xβ) OR deg(xα) = deg(xβ) and xα >Lex xβ .

Back to the example, we have y3z4 >GrLex xy2 here.

The other example, x2y >GrLex xy.

(*) RevLex: xα >RevLex xβ ⇐⇒ rightmost non-zero entry of α− β is negative. HOWEVER, this is NOT a
monomial order! Note that (3’) doesn’t hold, since we have:

x >RevLex> x2 >RevLex x3 >RevLex · · · ,

since this is an infinite descending chain of monomials. Also (3”) doesn’t hold, since this is NOT a global
order: 1 >RevLex x (we have (0, 0, ..., 0) and (1, 0, ..., 0)).
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(3) GrRevLex: xα >GrRevLex xβ ⇐⇒ deg(xα) > deg(xβ) OR deg(xα) = deg(xβ) and xα >RevLex xβ .

Exercise: Check this is a monomial order.

(4) Weighted orders: Take w = (w1, ..., wn) ∈ Rn
≥0. Then define xα >w xβ ⇐⇒ α · w > β · w ⇐⇒∑n

i=1 αiwi >
∑n

i=1 βiwi.

If the entries of w are rationally-independent, then >w is a monomial order. Also note that rationally
independent is equivalent to >w is a total order.

We could have problems.. pick w = (1, 1). Then x2 and xy can’t be compared.

What if we don’t want to work with w having Q-independent entries? Then start with any w (which may
give a partial order), then use a w′ to refine, continue ... use w(n) to refine. Then this will give a total order.

For example, you can recover Lex by using w = (1, 0, ..., 0), w′ = (0, 1, 0, ..., 0), ..., w
′···′ = (0, ..., 0, 1).

Note!: Any monomial order is equivalent to a refined weighted order.

3. Block order: Two blocks of variables {x1, ..., xn} and {y1, ..., ym}. Then>1=monomial order on k[x1, ..., xn]
and >2=monomial order on k[y1, ..., ym]. On R = k[x1, ..., xn, y1, ..., ym], we have

xαyα
′
>1,2 xβyβ

′
⇐⇒ xα >1 xβ OR xα = xβ and yα

′
>2 yβ

′
.

⋗ Defn: Let f =
∑

α aα︸︷︷︸
constants

xα︸︷︷︸
monomials

= amultideg(f)x
multideg(f)+lower terms, where > is a monomial order, and

multideg(f) = max{α : aα ̸= 0}.

The leading coefficient is LC(f) = amultideg(f).

The leading monomial is LM(f) = xmultideg(f).
The leading term is LT (f) = LC(f)LM(f).

⋗ Thm: (Division Algorithm) Fix a monomial ordering “>” on R = k[x1, ..., xn]. Let f1, ..., fx be an ordered
s tuple of non-zero polynomials in R. Then every polynomial f ∈ R can be written as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ R such that

1. multideg(f) ≥ multideg(aifi) for all i such that ai ̸= 0. (In fact, LT (f) = max{LT (ai)LT (fi) : ai ̸= 0}.)
2. no monomial appearing in r is divisible by any of LT (f1),..., LT (fs).

3. for i > j, no monomial of aiLT (fi) is divisible by LT (fj).

Proof. (Constructive) An algorithm that constructs ai, r.
ai = 0; r = 0.
while f ̸= 0, do

look at LT (f): if M = {i : LT (fi) : LT (f)} ≠ ∅, then (letting i = minM) f := f − LT (f)

LT (fi)
· fi︸ ︷︷ ︸

LT of this = LT (f)

and

ai := ai +
LT (f)
LT (fi)

. Else, f := f − LT (f) and r := r + LT (f).

Sep. 6, 2013

⋗ Notation: r = f%(f1, ..., fs) denotes remainder.



Peder Thompson’s Notes 918 Computational Algebra - Alexandra Seceleanu 4

⋗ Proof restarted.

Proof. Algorithm:
ai := 0; r := 0;
while f ̸= 0, do look at LT (f): if (U = {j : LT (fj)|LT (f)} ̸ ∅) then { i := minU .5

ai := ai + LT (f)/LT (fi)
f := f − (LT (f)/LT (fi))fi }
else6 {
r := r + LT (f)
f := f − LT (f). }

Claim: This algorithm terminates (in a finite number of steps). Denote by f (0) = f , f (t) = f obtained after
the tth iteration of the algorithm. The sequence of monomials

LT (f (0)), LT (f (1)), ...

because either (*) f (t+1) = f (t)−(LT (f)/LT (fi))fi when LT (fi)|LT (f (t)) OR (**) f (t+1) = f (t)−LT (f (t)) =⇒
LT (f (t+1)) < LT (f (t)).
Clarifying:
(*) f (t+1) = f (t) − (LT (f)/LT (fi))fi

LT (f (t+1)) = LT (f (t) − (LT (f)/LT (fi))fi)

= LT (LT (f (t) + lower order terms − (LT (f (t))/LT (fi))(LT (fi) + terms that are smaller than LT (fi) )

= LT ( terms that are smaller than LT (f (t))− term that is smaller than LT (f (t)))

< LT (f (t)).

By well-ordering ((3) of monomial orders) the sequence {LT (f (t))}t≥0 must terminate (i.e., after a number of
steps N , f (N) = 0).

This algorithm returns polynomials ai, r.

⋗ Exercise: Check that (1), (3) in Theorem also hold.

⋗ Rmk: Having fixed > and order of the fi’s, the division algorithm in the deterministic form produces a unique
remainder r. However, if we change the order of the fi’s or if we change the term order, then the algorithm
will produce a different remainder r.

⋗ Example 1: f1 = x3, f2 = x2y − y3, R = k[x, y], >=Lex with x > y. Let f = x3y.
Division Algorithm:

- Initialize: f (0) = x3y, a1 = a2 = 0 = r

- Iteration 1: U = {1, 2}, so i = 1. Then a1 = 0 + x3y
x3 = y. Then f (1) = x3y − x3y

x3 x3 = 0 (STOP).

Return: a1 = y; a2 = 0; r = 0, so f − y · f1 + 0 · f2 + 0 = y(x3) + 0(x2y − y3) + 0

⋗ Example 2: f1 = x2y − y3, f2 = x3 with same other hypotheses as in Ex. 1. Also let f = x3y. Division
Algorithm:

- Initialize: f (0) = x3y; a1 = a2 = 0 = r.

- Iteration 1: U = {1, 2}, so i = 1. Then a1 = 0 + x3y
x2y = x. Then f (1) = x3y − x3y

x2y · (x2y − y3) =

x3y − x3y + xy3 = xy3.

- Iteration 2: U = ∅ (so we move to else branch). Now r = 0 + xy3 and f (2) = xy3 − xy3 = 0 (STOP).

5this makes the algorithm “determinate” (indeterminate version is pick some i ∈ U).
6This ensures that (2) holds.
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Return a1 = x, a2 = 0, r = xy3. Hence f = x(x2y − y3) + 0(x3) + xy3.

⋗ Initial ideals.

⋗ Defn: Given an ideal I ⊆ R and a monomial order >, then the ideal of leading terms (the initial ideal) of I
is LT (I) =< LT (f) : f ∈ I >.

⋗ Rmks:

1. The set of monomial elements in the LT (I) is {LT (f) : f ∈ I} (Easy exercise).

2. If I = (f1, ..., fs), then < LT (f1), ..., LT (fs) >⊆ LT (I).

3. Equality need not hold.

⋗ Example: I = ( x3︸︷︷︸
f1

, x2y − y3︸ ︷︷ ︸
f2

) with Lex. Then < LT (f1), LT (f2) >=< x3, x2y >. But f = yf1 − xf2 =

yx3 − x3y + xy3 = xy3 ∈ I. Thus LT (f) = xy3 ∈ LT (I)

⋗ Defn: Fix a monomial order. A finite subset G = {g1, ..., gs} of an ideal I is called a Gröbner basis or
standard basis if LT (I) =< LT (g1), ..., LT (gs) >

⋗ Question:

1. Does every ideal have a GB?

2. how can we find a GB?

Sep. 9, 2013

⋗ Monomials ideals, Dickson’s Lemma, Hilbert Basis Theorem

⋗ Defn: A monomial ideal is an ideal generated by a (not necessarily finite) set of monomials.

I =< xα : α ∈ A >,

where A is a set of elements of Zn
≥0.
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⋗ Rmk: For I to be an ideal, the set of all exponents of monomials in I must be closed under translation by
vectors with integer coordinates in the positive orthant.

⋗ Lemma: (The membership problem for monomial ideals.)

1. xβ ∈ I =< xα : α ∈ A > ⇐⇒ ∃α ∈ A s.t. xα|xβ .

2. f ∈ I =< xα : α ∈ A > ⇐⇒ every term of f is divisible by some monomial in I.

Proof. Left as an exercise.

⋗ Thm (Dickson’s Lemma): Every monomial ideal is finitely generated.

First, a proof by example/picture:
I =< x4y2, x3y4, x2y5 >

Consider the following diagram that represents the ideal I:

Project points down on the x axis, getting the ideal < x2 >⊆ k[x]. The point lying over (2, 0) is (2, 5). Next,
go to looking at < x3 >⊆ k[x]. Using this we rewrite I as:

I =< x2y5 > + < x3y4 > + < x4y3 > + < x4y2 >,

i.e., x2y5, x3y4, x4y3, x4y2 is a finite set of generators for I (not minimal).

Proof of Dickson’s Lemma. By induction on n= the number of variables of R.

n = 1 Every ideal in k[x] is principal (see Homework #1), hence finitely generated.

n > 1 Now assume that every monomial ideal in k[x1, ..., xn−1] is finitely generated. We will prove that every
monomial ideal in k[x1, ..., xn−1, y] is finitely generated.

Let f : k[x1, ..., xn−1, y] → k[x1, ..., xn−1] be defined by f(xi) = xi for i = 1, ..., n − 1 and f(y) = 1.
Let I be an ideal of k[x1, ..., xn−1, y]. Then f(I) = J ⊆ k[x1, ..., xn−1] is an ideal. By inductive hypoth-
esis, J =< xα1 , ..., xαs > (which is finitely generated). Then there exist numbers m1, ...,ms such that
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xαiymi ∈ I. Let m = max{mi : 1 ≤ i ≤ s}.

Let Jk :=< xαyk : xαyk ∈ I >, where 0 ≤ k ≤ n − 1. Then f(Jk) is an ideal in k[x1, ..., xn−1] and so

f(Jk) =< xα
(k)
1 , ..., xα(k)

sk >.

Claim: I =< ymxα1 , ..., ymxαs > +
∑m−1

k=0 < ykxα
(k)
1 , ..., ykxα(k)

sk >.
Indeed, we only need to show the “⊆” containment (the opposite containment is obvious by construction).
Moreover, it’s enough to show that if xαyβ ∈ I, then xαyβ is in the RHS.

⋄ If β ≥ m, then since xα ∈ J , xα ∈< xα1 , ..., xαs > and so xαyβ ∈< xαym >⊆< xα1ym, ..., xαsym >.

⋄ If β ∈ {0, ...,m−1}, then xαyβ ∈ Jβ , and so xα ∈< xα
(β)
1 , ..., x

α(β)
sβ >, hence xαyβ ∈< xα

(β)
1 yβ , ..., x

α(β)
sβ yβ >.

⋗ Aside: We can also cover it with a disjoint union of copies of various dimensions of k:

x2y5k[x, y]⊕ x3y4k[x]⊕ x4y3k[x]⊕ x4y2k[x] := D,

we we’ll call the Stanley decomposition. We define the Stanley depth, sdepth, as the minimal dimension of a
component:

sdepth(D) = min{2, 1, 1, 1} = 1

Also,
sdepth(I) = max{sdepth(D) : D = Stanley decomposition of I}.

⋗ Conjecture: (Stanley): Let M be an R-module. Then depth(M) ≤ sdepth(M). (Here, let’s just view M = I
as an R-module.) For our ideal I above, we have depth(I) = 1 = sdepth(I).

Sep. 11, 2013

⋗ Defn: A Groebner Basis G = {g1, ..., gt} is minimal (respectively reduced) if

(1) LC(gi) = 1 for all gi ∈ G.

(2 - minimal) For all gi ∈ G, LT (gi) ̸∈< LT (g1), ..., LT (gi−1), LT (gi+1), ..., LT (gt) >.

(2 - reduced) For all gi ∈ G, no term of gi is in < LT (G\{gi}) >.

⋗ Hilbert basis, existence of GB

⋗ Hilbert Basis Theorem: Every ideal I in k[x1, ..., xn] is finitely generated. (Equivalently: k[x1, ..., xn] is
Noetherian i.e., ACC satisfied).

Proof. If I = {0}, we’re done
Otherwise, LT (I) =︸︷︷︸

Dickson’s Lemma

=< m1, ...,ms > for some monomials mi. By Remark after defn of LT (I),

every monomial in LT (I) is of the form LT (g), g ∈ I. This implies that there exists g1, ..., gs ∈ I such that
mi = LT (gi) for 1 ≤ i ≤ s.

Claim: I =< g1, ..., gs >. To see this, let f ∈ I. By the Division Algorithm applied to f w.r.t. any order of
the set {g1, ..., gs}, we have:

f =

s∑
i=1

aigi + r,

such that either r = 0 or no term in r is divisible by any of the LT (gi). Note that

r = f −
s∑

i=1

aigi ∈ I =⇒ LT (r) ∈ LT (I) =< LT (g1), ..., LT (gs) >,

so LT (r) is divisible by at least one of LT (gi), which contradicts the second possibility. Hence r = 0, which
means f =

∑s
i=1 aigi ∈< g1, ..., gs >.
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⋗ Cor: If I is an ideal in k[x1, ..., x], then a Groebner basis for I exists.

Proof. The set {g1, ..., gs} from the proof of HBT is a GB for I.

⋗ Prop (Normal form): Let G = {g1, ..., gt} be a GB of an ideal I and f ∈ R = k[x1, ..., xn]. Then there is a
unique r (independent of the order of elements of G) such that:

(1) Either r = 0 or no term of r is divisible by any of LT (gi).

(2) f = g + r with g ∈ I.

⋗ Defn: The normal form of f w.r.t. G (or I) is r from Proposition.

⋗ Notation: r = f%G = f%I = f
G

all mean normal form.

Proof of Prop: Existence is given by the Division Algorithm (use any ordering of the gi’s to apply the division
algorithm).

Uniqueness: Assume f = g + r and f = g′ + r′, where g, r, g′, r′ satisfy (1) and (2). Since g + r = g′ + r′,
we have r − r′︸ ︷︷ ︸

No terms are divisible by any of LT (gi) by (1)

= g′ − g︸ ︷︷ ︸
LT (g′−g)∈LT (I)=<LT (g1),...,LT (gs)>

∈ I. Therefore there are no

nonzero monomials in r − r′, hence r − r′ = 0 and so r = r′.

⋗ Cor (Ideal membership): Given I ⊆ R = k[x1, ..., xn], f ∈ R, then TFAE

(1) f ∈ I

(2) f%G = 0 for some GB G of I.

(3) f%G = 0 for any GB G of I.

Proof. Fix “<” a monomial order.

(1) =⇒ (2): Let f ∈ I, G be a GB of I, say {g1, ..., gs}. Then f ∈ I =< g1, ..., gs > and so f =

s∑
i=1

aigi︸ ︷︷ ︸
g

+0.

The uniqueness of normal form implies f%G = 0.

(2) =⇒ (1): f%G = 0 implies f = g + 0, g ∈ I, i.e., f ∈ I.

⋗ How to find GB?

⋗ Buchberger’s Criterion & Algorithm

⋗ Defn: Let f, g ∈ R. Let xγ = LCM(LM(f), LM(g)). The S-polynomial7 of f, g is S(f, g) = xγ

LT (f) ·f−
xγ

LT (g) ·g.
The leading term of the first part is xγ

LT (f) ·LT (f) = xγ . The leading term of the second part is xγ

LT (g) ·LT (g) = xγ .

Then multideg(S(f, g)) < γ.

⋗ Theorem (Buchberger’s Criterion): Let I ⊆ R be an ideal. A generating set G = {g1, ..., gs} for I is a
GB of I if and only if S(gi, gj)%G = 0, for every i ̸= j.

⋗ Theorem (Buchberger’s Algorithm): Let I =< f1, ..., fs ≯= {0}. Then a GB for I is constructed in a
finite number of steps following the algorithm below:
G := {f1, ..., fs}.
Repeat: G′ := G = {g1, ..., gt}. For every pair 1 ≤ i ̸= j ≤ t, if S(gi, gj)%G′ ̸= 0, then G = G ∪ {S(gi, gj)}.
Until G′ = G.

Sep. 13, 2013

7some people think S stands for Syzygy.
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⋗ Worked through M2: GBs.m2

⋗ Consider v3 : P2 → P9 (the 3rd Veronese). Instead, consider pv3 : P2 → P8, called the Pinched Veronese.
Consider:

0 → I → k[a0, ..., a8] → k[x, y, z]

where the maps are a0 7→ x3, ..., a8 7→ yz2. (We’ve thrown out the degree 3 term xyz.) The pinched veronese
is Koszul, which means when you resolve k over this ring, you get a linear resolution.

If I has a quadratic GB, then this is Koszul.

Sep. 16, 2013

⋗ Theorem (Buchberger’s Criterion): If I is an ideal in a polynomial ring and G = {g1, ..., gs} is a generating
set for I, then TFAE:

(i) G is a Gröbner basis for I.

(ii) For every f, g ∈ G, S(f, g)%G = 0 (some order on G).

Proof. (i) =⇒ (ii): Recall that S(f, g) := xγ

LT (f) · f − xγ

LT (g) · g ∈ I. By the Ideal Membership Criterion (using

the fact that G is a GB for I), we get that S(f, g)%G = 0.

(ii) =⇒ (i): We want to show that LT (I) =< LT (g1), ..., LT (gs) >. Let f ∈ I and write f =
∑s

i=1 aigi
(which we can do since G is a generating set for I). Here, multideg(f) ≤ max{multideg(aigi) : 1 ≤ i ≤ s}.

Case 1: If multideg(f) = max{multideg(aigi) : 1 ≤ i ≤ s}, then LM(f) = LM(aigi) for some i, so LM(gi)|LM(f)
for some i, hence LT (f) ∈< LT (g1), ..., LT (gs) >.

Case 2: If multideg(f) < max{multideg(aigi) : 1 ≤ i ≤ s} := δ, our aim is to show that this cannot occur. Start
with an expression (*) that achieves the minimum possible δ. Among all expressions (*) with minimum
possible δ start with one that has the property that #{i : multideg(aigi) = δ} is minimum possible (for
this fixed δ). We now have, possibly relabeling the gis,

(∗) f = a1g1 + · · · amgm︸ ︷︷ ︸
multideg=δ

+ am+1gm+1 + · · ·+ asgs︸ ︷︷ ︸
multideg<δ

. (1)

Note that we must have m ≥ 2 because cancellation must occur in the first piece.

S(g1, g2) =
xγ

LT (g1)
· g1 − xγ

LT (g2)
· g2. By (2), we have S(g1, g2)%G = 0, so S(g1, g2) =

∑s
i=1 bigi +0, where

multideg(bigi) ≤ multidegS(g1, g2)︸ ︷︷ ︸
<γ

(using condition (2) in the Division Algorithm). Now,

xγ

LT (g1)
· g1 −

xγ

LT (g2)
· g2 −

s∑
i=1

bigi = 0. (2)

Recall, xγ = LCM(LM(g1), LM(g2)) and xδ = LM(a1g1) = LM(a2g2), hence xδ is a common multiple
of LM(g1) and LM(g2). Therefore xγ |xδ, i.e., xγ · xµ = xδ for some µ. Multiplying through (2) by
LC(a1g1)x

µ. This gives

LC(a1g1)
xγxµ

LT (g1)
· g1︸ ︷︷ ︸

multideg=δ,lead.coeff=LC(a1g1)

−LC(a1g1)
xγxµ

LT (g2)
· g2︸ ︷︷ ︸

multideg=δ

−
s∑

i=1

LC(a1g1) bigi︸︷︷︸
multideg<γ, from div alg.

xµ

︸ ︷︷ ︸
multideg<δ

= 0. (3)
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Now subtract (3) from (1) to get:(
a1 − LC(a1g1)

xδ

LT (g1)

)
g1︸ ︷︷ ︸

multideg<δ

+

m∑
i=2

(BLAH) · gi︸ ︷︷ ︸
multideg≤δ

+

s∑
i=m+1

(BLEH) · gi︸ ︷︷ ︸
multideg<δ

= f (∗)

However, this now has ≤ m − 1 terms of multidegree δ, contradicting minimiality, so this case does not
actually occur.

So, by Case 1, LT (f) ∈< LT (g1), ..., LT (gs) >, hence LT (I) ⊆< LT (g1), ..., LT (gs) >, implying that LT (I) =<
LT (g1), .., LT (gs) >. Therefore G is a GB for I.

⋗ Buchberger’s Algorithm:
G := {f1, ..., fs} is your set of generators for I.
Repeat G′ := G = {g1, ..., gs}
for i ̸= j do: compute S(gi, gj) if S(gi, gj)%G ̸= 0, G = G ∪ {S(gi, gj)%G}8
Until G′ = G (i.e., at some iteration all S-polys give remainder 0.

⋗ Proof of Correctness of Bucherberger Algorithm. First of all, the fact that it computes a GB is a consequence
of Buchberger’s Criterion.

Let’s prove that this algorithm terminates in finitely many steps.

Claim: If G′ ̸= G, then < LT (G′) >⊊< LT (G) >.

To see this, note that G′ ̸= G gives that there exists g1, g2 ∈ G′ such that S(g1, g2)%G′ ̸= 0. Let r =
S(g1, g2)%G′. Then (3) in the Division Algorithm implies that no term in r is in < LT (G′) >. In particular,
LT (r) ̸∈< LT (G′) >. However, r ∈ G so LT (r) ∈< LT (G) >. Therefore we have < LT (G′) >⊊< LT (G) >.
We now have an ascending chain of monomial ideals

< LT (G(0)) >⊂< LT (G(1)) >⊂ · · ·

where G(i) is G after the ith iteration. This ascending chain must terminate. Therefore there exists i such
that < LT (G(i)) >=< LT (G(i+1)) >, hence G(i) = G(i+1), implying that the algorithm stops after iteration
i+ 1.

Sep. 18, 2013

⋗ Prop: Fix a monomial order and an ideal I. Then there is a unique reduced GB for I.

Proof. Existence: homework problem.

Uniqueness: Assume G and G′ are reduced GB’s for I, hence G and G′ are minimal. By a homework #1
problem, this implies LT (G) and LT (G′) are minimal sets of monomial generators for LT (I).

Notation:
LT (I) is the ideal generated by the set of leading terms of all elements of I (I here is an ideal).
LT (G) is the set of leading terms of all elements of G (where G is just a set).

Fact (left unproven): A monomial ideal has a unique minimal set of monomial generators.

This Fact then implies that LT (G) = LT (G′). Let g ∈ G′. Therefore there exists g′ ∈ G′ such that LT (g) =
LT (g′). Consider g − g′. Note that no terms in g − g′ are divisible by elements of LT (G), since G and G′ are
reduced. Note that:

8This was INCORRECT previously; it is the remainder, not the S-poly itself.
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(1) (g − g′)%G = g − g′

(2) g − g′ ∈ I implies (g − g′)%G = 0.

Therefore, by (1) and (2), g − g′ = 0, so g = g′. By a symmetric argument, we then obtain that G = G′.

⋗ Ideal - Variety Correspondence (Improved):

⋗ Ideals⊆ k[x1, ..., xn] correspond to affine varieties ⊆ An by V and I.
V(I) = set of common solutions of f1, ..., fs, where I =< f1, ..., fs >.
I(V ) = set of polynomials vanishing at every point of V .
Facts: we have I(V(I)) ⊇ I (where strict inequality can occur).

⋗ Thm (Weak Nullstellensatz): If k = k, then V (I) = ∅ if and only if I = (1) = k[x1, ..., xn].

⋗ Cor (Consistency Theorem): - A practical way to check when V (I) = ∅.
If k = k, then TFAE:

(1) V(I) = ∅
(2) I = (1)

(3) Any GB G of I contains a constant among its elements.

(4) The reduced GB of I is just {1}.

This isn’t a silly theorem; consider the ideal I = (x− 1, x+ 1) = (1) (char not 2).

⋗ Thm (Finiteness Theorem): Suppose k = k and R = k[x1, ..., xn]. Then TFAE:

(1) V(I) is finite.
(2) R/I is a finite dimensional k-vector space.

(3) There exists finitely many monomials outside LT (I).

(4) If G is a GB for I, then for every i, there exists ni ≥ 1 such that xni
i is the leading term of some element

of G ⇐⇒ LT (I) contains pure powers of every variable.

⋗ Thm (Strong Nullstellensatz): Let k = k and I ⊆ k[x1, ..., xn]. TFAE:

(1) f ∈ I(V(I))
(2) There exists m ≥ 1 such that fm ∈ I (if and only if (by defn) f ∈

√
I).

In other words, I(V(I)) =
√
I.

Proof. (1) =⇒ (2) : Suppose I =< f1, ..., fs >. Consider Ĩ =< f1, ..., fs, 1− gf >⊆ k[x1, ..., xn, y].
9

Claim: V(Ĩ) ̸= ∅. Suppose not. Let (a1, ..., an, b) ∈ V(Ĩ). By definition of V, we have fi(a1, ..., an) = 0 for all
1 ≤ i ≤ s, hence (a1, ..., an ∈ V(I). Then 1 − b · f(a1, ..., an) = 0. Since f ∈ I(V(I)), we get f(a1, ..., an) = 0.
Now 1− b · f(a1, ..., an) = 0 implies 1 = 0, a contradiction.

By Weak Nullstellensatz, V(Ĩ) = ∅ ⇐⇒ Ĩ = (1) = k[x1, ..., xn, y]. Hence 1 =
∑s

i=1 pi(x1, ..., xn, y) ·
fi(x1, ..., xn) + g(x1, ..., xn, y) · (1− y · f(x1, ..., xn). Substitute y = 1

f(x1,...,xn)
. Then

1 =

s∑
i=1

pi

(
x1, ..., xn,

1

f(x1, ..., xn)

)
· fi(x1, ..., xn) + 0.

Let m = max{ni} (where ni = deg(pi)).

fm =
∑

gi(x1, ..., xn) · fm−ni · fi,

hence fm ∈ I.

9Coming up with Ĩ is usually referred to as Rabinowitz’s Trick.
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⋗ Thm (Radical Membership):10 Let k = k, I and ideal, and f ∈ R. TFAE:

(1) f ∈
√
I

(2) Ĩ = I + (1− y · f) = k[x1, ..., xn, y].

(3) The reduced GB of Ĩ is just {1}.

⋗ Cor (Improved Ideal-Variety correspondence): The following maps are inclusion-reversing bijections
that are inverse to each other.

{Radical Ideals︸ ︷︷ ︸
(i.e., I =

√
I)

⊆ k[x1, ..., xn]} ↔ {Varieties in An}.

⋗ Next: Elimination. Looked at graph of I =< xy = 1 >. Then I(π(V )) = I ∩ k[x].

Sep. 20, 2013

⋗ Elimination Theory (Elimination of variables = Projecting onto coordinate hyperplanes)

⋗ Example: V =< y − z, zy − 1 >. Consider the projection π : A3 → A2 defined by π(x, y, z) = (y, z). Then
π(V ) = the line y = z in the yz-plane, except at (0, 0). This line is the ideal < y − z >⊆ k[y, z]. Notice that
π(V ) is not a variety: V(y − z) is the whole line.

⋗ Goals:

1. Give an algorithmic way for finding generators for the ideal Iℓ “describing” π(V ).

2. Relate π(V ) to V(Iℓ).
3. Extending partial solutions (lifting from V(Iℓ) to V(I)).

⋗ Defn: Let t ∈ N, 1 ≤ t ≤ n. An elimination order of R = k[x1, ..., xn] w.r.t. x1, ..., xt is a monomial order
which satisfies the following:

(E) : LT (f) ∈ k[xt+1, ..., xn] =⇒ f ∈ k[xt+1, ..., xn]

⋗ Examples:

1. Lex with x1 > x2 > · · ·xn is an elimination order for any t.

2. Block order (product order) given by 2 arbitrary monomial orders>1 and>2 on k[x1, ..., xt] and k[xt+1, ..., xn].
The block order = first compare using >1 then break ties using >2 ((E) holds because any monomial ≥ 1.)

3. Weighted order with w = (1, ..., 1, 0, ..., 0). First compare using >w then break ties using some other
arbitrary monomial order on R.

⋗ Defn: The ideal It = I ∩ k[xt+1, ..., xn] is called the tth elimination ideal of I. (It ⊆ k[xt+1, ..., xn].)

⋗ Thm (Elimination Theorem): Let I be an ideal in R = k[x1, ..., xn], let G be a GB of I w.r.t. an elimination
order for x1, ..., xt. Then Gt = G∩k[xt+1, ..., xn] is a GB for It for the induced monomial order on k[xt+1, ..., xn].

⋗ Example: I =< y − z, xy − 1 >. Compute I1 := I ∩ k[y, z].

- Use Lex with x > z > y. Then G = {y− z, xy− 1} is a GB, the Elimination Theorem gives G1 = {y− z}
is a GB for I1, hence I1 =< y − z >. Then

S(y − z, xy − 1)%{y − z, xy − 1} = 0

(by a homework problem).

10Using part (3), this allows us to test if an element is in the radical of an ideal.
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- Use Lex with x > y > z. Then

S(y − z, xy − 1) = x(y − z)− (xy − 1) = −xz + 1

−xz + 1%{y − z, xy − 1} = −xz + 1

G = {y − z, xy − z,−xz + 1}

(check Buchberger stops here). By Elimination Theorem, G1 = {y − z}, hence I1 =< y − z >.

Proof of Elimination Theorem. We need to show:

- < Gt >= It

- < LT (Gt) >= LT (It). (Clearly, Gt ⊆ It gives < LT (Gt) >⊆ LT (It).) For the converse, let f ∈ It, and so
f ∈ k[xt+1, ..., xn], hence LT (f) ∈ k[xt+1, ..., xn]. f ∈ I and G is a GB for I, and so LT (f) ∈< LT (G) >,
which implies there is g ∈ G such that LT (g)|LT (f). This means we can write LT (g) ∈ k[xt+1, ..., xn],
hence by (E), g ∈ k[xt+1, ..., xn] and so g ∈ G ∩ k[xt+1, ..., xn] = Gt. Therefore LT (f) ∈< LT (Gt) >.
Hence LT (It) ⊆< LT (Gt) >.

⋗ Defn: A point (at+1, ..., an) ∈ V(It) ⊆ An−t is a partial solution to the equations given by (a finite set of
generators) of I.

⋗ Defn: A set of points is Zariski closed if it is an affine variety. We say a set of points is Zariski open if its
complement is Zariski closed.

⋗ Rmk: Zariski open sets form a topology on An.

⋗ Defn: Given a set of points S, the Zariski closure of S is the smallest Zariski closed set containing S, denoted
by S.

⋗ Example: The Zariski closure of a line missing a point in the yz-plane is the entire line in the plane.

⋗ Next time: π(V ) = V(It)

Sep. 23, 2013

⋗ Given an ideal I ⊆ k[x1, ..., xn]; V = V(I). We defined It = I ∩ k[xt+1, ..., xn] (the tth elimination ideal). We
defined V (It) = the variety of partial solutions.

We have πt : An → An−t is the projection onto last (n− t)-coordinates.

⋗ Closure Theorem: If k is algebraically closed, then πt(V ) = V(It).

⋗ Defn: If S is a set of points in An, we can define I(S) = {f ∈ k[x1, ..., xn] : f vanishes at every point in S}.

⋗ Lemma: If S is a set of points in An, then S = V(I(S)).

Proof. We need to show:

(1) V(I(S)) is an affine variety containing S. (By defn).

(2) V(I(S)) is the smallest (w.r.t. containment) affine variety containing S. Let W be an affine variety
containing S. We’ll show V(I(S)) ⊆ W . We have

W ⊇ S =⇒ I(W ) ⊆ I(S) =⇒ W = V(I(W )) ⊇ V(I(S)),

hence W ⊇ V(I(S)).
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Proof of Closure Theorem: Claim 1: πt(V ) ⊆ V(It).

If (at+1, ..., an) ∈ πt(V ), then there exists (a1, ..., an) ∈ V = V(I) such that for all f ∈ I, f(a1, ..., an) = 0.
Therefore for all f ∈ I ∩ k[xt+1, ..., xn], f(a1, ...., an) = 0. Then for any f ∈ It, f(at+1, ..., an) = 0. Thus
(at+1, ...., an) ∈ V(It).
πt(V ) ⊆ V(It), and so πt(V ) ⊆ V(It).

Claim 2: I(πt(V )) ⊆ I(V(It)). Let f ∈ I(πt(V )), then f vanishes at every point of πt(V ). View f as a
polynomial in k[x1, ..., xn]. Then f vanishes at every point of V .

f(a1, ..., at, at+1, ..., an) = f(at+1, ..., an) = 0

Thus f ∈ I(V ) = I(V(I)) =
√
I, and so there exists m ≥ 1 such that fm ∈ I. Then f ∈ k[xt+1, ..., xn] =⇒

fm ∈ k[xt+1, ..., xn], and so fm ∈ I ∩ k[xt+1, ..., xn] = It. Therefore fm ∈ It, hence f ∈
√
It = I(V(It)). Here

we’re using the Strong Nullstellensatz.

So I(πt(V )) ⊆ I(V(It)) =⇒ V(I(πt(V ))) ⊇ V(I(V(It))). Therefore πt(V ) ⊇ V(It).

⋗ The Prop says: “most” partial solutions come from actual solutions. πt(V ) fills up “most” of V(It) = πt(V ).

⋗ Prop: There exists an affine variety W ⊆ V (It) such that

- V(It)\W = V(It) (i.e., W is “small”)

- V (It)\W ⊆ πt(V ) (i.e., V (It) differs from πt(V ) by some set that is even smaller than W .

⋗ Thm (Extension Theorem): Let k be algebraically closed; let I1 be the first elimination ideal. Say I =<
f1, ..., fs >⊆ k[x1, ..., xn]. Write fi = xNi

1 gi(x2, ..., xn) + terms where degree in x1 is < Ni. Let (a2, ..., an) ∈
V(I1) be a partial solution. Then (a2, ..., an) extends to a solution (a1, ..., an) ∈ V(I) if and only if (a2, ..., an) ̸∈
V(< g1, ..., gs >).

⋗ Example: (from last time) I =< y − z, xy − 1 >. We saw I1 =< y − z >. A point (a, a) ∈ V(I1) extends to a
point (a1, a, a) ∈ V(I) if and only if (a, a) ̸∈ V(y − z, y) = V(y, z) = {(0, 0)} (where in the theorem, g1 = y − z
and g2 = y). Hence a partial solution extends if and only if it is not the origin.

Sep. 25, 2013

⋗ absent / see Kat’s notes

Sep. 27, 2013

⋗ Computer day.

Sep. 30, 2013

⋗ Dickson’s Lemma =⇒ Proof of Hilbert Basis Theorem =⇒ Existence of GBs.

⋗ Also, Dickson’s Lemma =⇒ the well ordering property for total orderings on monomials that refine divisibility.

⋗ Monomial Ordering (with well-ordering to insure termination of the division algorithm in finitely many steps)
=⇒ Division Algorithm (determinate form - involves an order on the set {g1, ..., gs}) =⇒ Division Algo-
rithm (indeterminate form) (to see if S(f, g) =

∑
aigi, multideg(aigi) ≤ multidegS(f, g)) =⇒ Buchberger’s

Algorithm / Criterion =⇒ Construction of GBs

⋗ Gröbner bases for modules
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⋗ Let R = k[x1, ..., xn]. Use u, v to denote monomials in R (formerly xα).
Fix a free R-module F with basis {e1, ..., er}

⋗ Defn: We say m ∈ F is a monomial in F if m = u · ei, where u is a monomial in R.

⋗ Defn: We say that U is a monomial submodule of F if it is generated by monomials of F .

⋗ Prop: (Characterization of monomial submodules):

U ⊆ F is a monomial submodule if and only if for every 1 ≤ i ≤ r there is a monomial ideal Ii ⊆ R such that
U = I1e1 ⊕ · · · ⊕ Irer.

⋗ Cor 1: Any monomial submodule of a free R-module is finitely generated. (use the Prop and Dickson’s lemma,
taking finite generators for each of the Ii).

⋗ Cor 2: Any submodule of a finitely generated free R-module is finitely generated (from Cor. 1 and the
argument from Dickson’s Lemma to the proof of the Hilbert Basis Thm.)

⋗ Cor 3: Gröbner bases for modules exist.

⋗ Defn: A monomial ordering on the monomials of the free module F is a total order satisfying:

(1) m < um, for any monomial m ∈ F , for any u ∈ R, u a monomial, u ̸= 1.

(2) m1 < m2 implies um1 < um2 for all m1,m2 ∈ F monomials and for all u ∈ R, a monomial.

⋗ Examples of monomial orderings on F : We fix a monomial order “>” on R.

1. Position over Coefficient: uei > uej if i < j OR i = j and u > v.

2. Coefficient over Position: uei > uej if u > v OR u = v and i < j.

For example, take R = k[[x1, x2] and F = Re1 ⊕Re2. Then x2e1 >PoC x1e2 but x2e1 <CoP with Lex on R x1e2.

⋗ The notions of LT,LC,LM have the same definition.

⋗ Defn: Given a submodule U of a finitely generated free module F , a set G = {g1, ..., gs} is a Gröbner basis of
U if

(1) G generates U (as an R-module).

(2) LT (U) =< LT (g1), ..., LT (g2) >. Where LT (U) is the “initial module of U .”

⋗ Defn: S-elements can bej defined for f, g ∈ F such that LT (f) = uei and LT (g) = vej where i = j. For such
f, g we define:

S(f, g) =
LCM(u, v)

u
f − LCM(u, v)

v
g.

(This is defined so that cancellation of LTs occurs.)

⋗ Syzygies:

⋗ Prop: Given an R-module M there exists a free R-module F and a submodule U of F such that M ∼= F/U .
Moreover, if M is finitely generated, then F can be chosen to be finitely generated.

Proof. Use first iso theorem.

Oct. 2, 2013

⋗ Syzygies:
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⋗ Last time: Given an R-module M , we can iterate the procedure in the proof of the presentation (Prop.) to
come up with a sequence of the free R-modules and R-module maps:

· · ·
ϕ3 // F2

  

ϕ2 // F1

  

ϕ1 // F0
ε // M // 0

U2

>>

U1

>>

0

>>

0

>>

such that

- M = coker(ϕ1) = F0/ im(ϕ1)

- ker(ϕi) = im(ϕi+1) (This implies ϕi ◦ ϕi+1 = 0 for all i)

⋗ Defn: A sequence of free R-modules and R-modules maps as above is called a free resolution of M over R.
The module Ui = ker(ϕi) = im(ϕi+1) is called the ith syzygy module of M with respect to the resolution F•.

⋗ Question: How to compute (find generators or presentations) for Ui?

⋗ Defn: Say U =< f1, ..., fs > is an R-module. We denote by syz(f1, ..., fs) = ker(Rs → U).

⋗ Lemma: (Buchberger’s criterion gives us syzygies for free.) If {f1, ..., fs} is a GB for an R-modules U , then we
can use S(fi, fj) to come up with elements rij ∈ syz(f1, ..., fs).

Proof. (Also defining rij .)

Whenever the leading terms of fi, fj are supported on the same basis element of F we defined S(fi, fj) =
uijfi − ujifj (where uij = LCM(−)/LT (−) and uji = LCM(−)/LT (−)).

Since {f1, ..., fs} is a GB, Buchberger’s criterion for modules tells us S(fi, fj) =
∑

aijkfk, with LT (S(fi, fj)) ≥
LT (aijkfk) for all k. So,

uijfi − ujifj =
∑

aijkfk =⇒
s∑

k=1

aijkfk − uijfi + ujifj = 0.

Define: rij =
∑s

k=1 aijkek − uijei + ujiej .

Clearly, ϕ(rij) = 0, so rij ∈ ker(ϕ) = syz(f1, ..., fs).

⋗ Thm: The elements rij generate syz(f1, ..., fs) (if {f1, ..., fs} is a GB).

Sketch of Proof. Assign to r ∈ syz(f1, ..., fs) (write r =
∑s

i=1 hiei) the monomial ur = max{LT (hifi)}1≤i≤s.

Then the proof goes by contradiction: Suppose there exists r ∈ syz(f1, ..., fs)\ < rij >. Consider among such
r one that has minimum possible ur.

Since ϕ(r) = 0, there exists at least 2 terms h1f1 and h2f2 such that ur = LT (h1f1) = LT (h2f2).

Use r12 and r to fabricate r′ ∈ syz(f1, ..., fs) such that ur′ < ur, contradicting minimality.

⋗ Cor: If U is a monomial submodule of F and {f1, ..., fn} is a set of monomial generators for U (in particular
{f1, ..., fn} is a GB for U), then syz(f1, ..., fn) is generated by rij = uijei − ujiej , where uij , uji are the
coefficients from S(fi, fj) if this exists. (i.e., rij is gotten from S(fi, fj) by replacing fi by ei and fj by ej).

11

⋗ Lemma: U is a free R-module if and only if LT (U) = ⊕m
j=1Ijej with all Ij being principal ideals.

Proof. Homework.

11Key point: If fi, fj are monomials, then S(fi, fj) = 0, hence aijk = 0 for all k.
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⋗ Algorithm for computing a free resolution for M :

- Start with a presentation M = F/U .

- Set i = 1, U1 = U .

- Repeat until Ui is free:

⋄ Compute a GB of Ui; compute LT (Ui) and decide if Ui is free.

⋄ If Ui is not free, then Ui+1 :=< rjk >.

⋄ i = i+ 1

⋗ Example: Set M = R/ < x2, xy, y2 >, where R = k[x, y]. Then (use a monomial order such that xy > y2):
f1 = x2 and f2 = xy + y2. Then U1 =< f1, f2 > but we want a GB for U1. F0 = R.

Compute S(f1, f2) = yf1 − xf2 = −xy2 = −yf2 + y3. Buchberger’s algorithm says: throw in f3 = y3.

r12 = ye1 − xe2 + ye2 − e3 = ye1 + (y − x)e2 − e3

r13 = y3e1 − x2e3 (easy because f1, f3 are monomials – see Cor.)

r23 comes from S(f2, f3) = y2f2 − xf3 = y4 = yf3, so r23 = y2e2 − xe3 − ye3 = y2e2 − (x+ y)e3.

So {f1, f2, f3} is a GB and syz(f1, f2, f3) =< r12, r13, r23 >. We want syz(f1, f2)....

Oct. 4, 2013

⋗ See Haydee’s notes.

Oct. 7, 2013

⋗ Used to be following Cochslittle / oshea (?)

⋗ Now following: V. Ene & J. Herzog called “Gröbner bases in Commutative Algebra.”

⋗ Also following: D. Eisenbud called “Commutative Algebra with a view towards Algebraic Geometry.”

⋗ Example: Compute a free resolution of M = R/ < x2, xy+ y2 > where R = k[x, y] with Lex such that x > y.

- Start with the presentation of M = R1/U , where U =< x2, xy + y2 >⊆ R1.

- We then have R2 → U a surjection, mapped to x2 and xy + y2. This gives a map

R2 → R → M → 0,

where the first map is given by
[
x2 xy + y2

]
. We now need syz(x2, xy + y2) ⊆ R2.

- Need to compute GB of U . Put f1 = x2 and f2 = xy + y2.

⋄ First iteration: Compute:

S(f1, f2) = yf1 − xf2 = −xy2 = −yf2 + y3.

The remainder in the last term is y3 ̸= 0. Buchberger’s Algorithm tells us we need to include f−3 = y3

in the GB. Now G = {f1, f2, f3}.
⋄ Second iteration:
S(f1, f2) = −yf2 + f3 + 0 (nothing new).
S(f1, f3) = y3f1−x2f2+0. (Nothing new; This is always the case if you start with coprime monomials.)
S(f2, f3) = y2f2 − xf3 = y4 = yf3 + 0. (Again, nothing new.) B. Criterion STOP.

So, we have that G = {f1, f2, f3} is a GB for U .
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- Turning S-polys into generators for the syzygy module syz(f!, f2, f3). (Then at the end we’ll prune down.)

yf1 − xf2 = −yf2 + f3 =⇒ ye1 − xe2 + ye2 − e3 ∈ syz(f1, f2, f3)

So here we’re mapping three copies of R onto U via ei 7→ fi. The kernel of this map is syz(f!, f2, f3). Here
r12 = ye1 + (y − x)e2 − e3.
r13 = y3e1 − x2e2
r23 = y2e2 − (x+ y)e3
syz(f1, f2, f3) =< r12, r13, r23 >⊆ R3.

- Pruning step: Plug in e3 = ye1 + (y− x)e2 into r12, r13, r23. Then r12 becomes trivial.. call the latter two
r′13 and r′23.

Then:
r′13 = y3e1 − x2(ye1 + (y − x)e2) = y3e1 − x2ye1 − x2(y − x)e2

r′13 = (y3 − x2y)e1 − x2(y − x)e2 = y(y + x)(y − x)e1 − x2(y − x)e2

r′23 = y2e2 − (x+ y)(ye1 + (y − x)e2) = −(xy + y2)e1 + x2e2,

r′23 = −y(x+ y)e1 + x2e2.

Hence
syz(f1, f2) =< r′13, r

′
23 >⊆ R2

But: r′13 = (y − x)r′23. So, syz(f1, f2) =< r′23 >⊆ R2. Hence syz(f1, f2) ∼= R, so it’s a free R-module!

Now,

0 // R

−y(x+ y)
x2


// R2

[
x2 xy + y2

]
// R // M // 0

is a free resolution of M (over R). Check the composition of the two maps in the middle are indeed 0.

⋗ Schreyer’s Theorem: The idea: change monomial order at each step of computing a free resolution so that
{rij} form a GB for the syzygy module.

⋗ Defn: Let U =< f1, ..., fs > be a submodule of a free R-module F (we already have a given monomial order
on F ). Let F ′ = Rs → U by sending ei → fi. We define a monomial order on F ′ as follows:

uei <{f1,...,fs} vej

if LM(ufi) < LM(vfj) in F or LM(ufi) = LM(vfj) and j < i.

⋗ (Check: this is a monomial order on F ′.)

⋗ Theorem (Schreyer): If {f1, ..., fs} is a GB of U , then {rij} (as defined last time) form a GB for syz(f1, ..., fs)
with respect to >{f1,...,fs}. Moreover if i < j, LT (rij) = uijei, where LT (fi) = uek, LT (fj) = vek implies
uij = LCM(u, v)/u. (uij come from S(fi, fj) = uijfi − ujifj .)

Oct. 9, 2013

⋗ Theorem (Schreyer): If {f1, ..., fs} is a GB of U , then {rij} (as defined last time) form a GB for syz(f1, ..., fs)
with respect to >{f1,...,fs}. Moreover if i < j, LT (rij) = uijei, where LT (fi) = uek, LT (fj) = vek implies
uij = LCM(u, v)/u. (uij come from S(fi, fj) = uijfi − ujifj .)

Proof. Recall {f1, ..., fs} is a GB for U so by Buchberger’s Criterion, S(fi, fj) =
∑s

k=1 aijkfk, where LT (aijkfk) ≤
LT (S(fi, fj)) for every k such that aijk ̸= 0.

By definition, whenever fi and fj are of the form LT (fi) = uek and LT (fj) = vek,

S(fi, fj) = (LCM(u, v)/u)fi − (LCM(u, v)/v)fi
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Hence uijfi − ujifj =
∑s

k=1 aijkfk, so
∑s

k=1 aijkfk − uijfi − ujifj = 0. Then

rij =

s∑
k=1

aijkek − uijei − ujiej .

Claim 1: Every monomial in
∑s

k=1 aijkek is <{f1,...,fs} than uijei. Indeed, LT (aijkfk) ≤ LT (S(fi, fj)).
Therefore LT (aijkek) <{f1,...,fs} LT (uijei) = uijei.

Claim 2: ujiej <{f1,...,fs} juijei.

LM(ujifj) = LM(uijfi)

and
i < j =⇒ ujiej <{f1,...,fs} uijei

Claims 1 & 2 then imply LT (rij) = uijei. Next, we show {rij form a GB.We need to show that LT (syz{f1, ..., fs}) =<
LT (rij) >. Let r ∈ syz{f1, ..., fs} ⊆ F ′.

Hence r =
∑s

j=1 rjej . Suppose LT (r) = viei for some fixed i, vi is a monomial in R = k[x1, ..., xn.

Denote LT (rjej) = vjej for every 1 ≤ j ≤ s.

r ∈ syz(f1, ..., fs), so ϕ(r) = 0 and so
∑s

j=1 rjfj = 0, in particular, LT (vifi) appears in the sum and is cancelled
by other summands.

Let S = {j|LM(vjfj) = LM(vifi)}.
Claim 3: i = min s.

For every j ∈ S, rjej <{f1,...,fs} riei because LT (r) = viei. Also for every j ∈ S, LM(rjej) = LM(riei). Hence
j > i (breaking ties using position).

Let r′ =
∑

j∈S vjej . But
∑

j∈S vjLT (fj) = 0 (because
∑

rjfj = 0). Therefore r′ ∈ syz(LT (fj1), ..., LT (fjt)).
By the Cor, r′ =

∑
k,l∈S bkl(uklek − ulkel). Then LT (r′) is divisible by ukiei = LT (rij) for some k ∈ S, and so

LT (rij)|LT (r′) = LT (r). This means LT (r) ∈< LT (rij) >.

⋗ Cor: Re-index {f1, ..., fs} such that whenever LT (fi) and LT (fj) involve the same basis element, say LT (fi) =
uek and LT (fj) = vek, then u >Lex v. Then if x1, ..., xt do not appear in LT (fj), then x1, ..., xt+1 do not
appear in LT (rij).

Proof. By the Theorem, LT (rij) = uijei = (LCM(u, v)/u)ei. Then u >Lex v =⇒ exponent of xt+1 in u is
bigger than the exponent of xt+1 in v, we get exponent of xt+1 in LCM(u, v) is exponent of xt+1 in u, and so
this power cancels in LCM(u, v)/u.

⋗ Thm (Hilbert’s Syzygy Theorem): Let M be a finitely generated R-module (R = k[x1, ..., xn]). Then M
admits a free resolution over R of length at most n.

For the resolution
0 → Fp → Fp−1 → · · · → F1 → F0 → M → 0

we define p to be the length of the resolution.

Proof. Let t= largest index such that x1, ..., xt do not appear in LT (U1). By the Corollary, x1, ..., xt+1 do not
appear in LT (U2). Inductively, x1, ..., xt+i−1 do not appear in LT (Ui). Set i = n − t + 1. Then x1, ..., xn do
not appear in LT (Un−t+1). Hence LT (Un−t+1) = 0, and so Un−t+1 = 0. Then note n− t = p ≤ n.
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Oct. 11, 2013

⋗ Computer day.

Oct. 14, 2013

⋗ Plan of what’s to come:

1. Graded rings, modules, resolutions

2. (Multi) Graded free resolutions for monomial ideals

3. The relationship between the free resolution of I and that of LT (I).

⋗ Graded rings and modules / Graded resolutions.

⋗ Defn: Let k be a field. A ring R is a graded k-algebra (graded ring) if

1. R = ⊕i≥0Ri, each Ri is a k-vector space.

2. R0 = k

3. RiRj ⊆ Ri+j .

We say R is standard graded if R = k[R1] and dimk R1 < ∞.

⋗ Example: R = [x1, ..., xn] = k⊕spank < x1, ..., xn > ⊕spank < x2
i , xixj > ⊕ · · ·⊕spank < deg i monomials >.

⋗ Prop: Let R be a graded k-algebra. Then TFAE:

1. R is standard graded

2. R = k[x1,...,xn]
I , where I is a homogeneous ideal contained in k[x1, ..., xn] and n = dimk R1.

⋗ Defn: Let R be a graded ring. An R-moduleM is called a graded R-module ifM = ⊕i∈ZMi and RiMj ⊆ Mi+j .

⋗ Rmk: Any finitely generated graded R-module can be generated by a finite system of homogeneous elements.
(Homogeneous elements are elements in Mi for some i.)

⋗ From now on, R = k[x1, ..., xn], m = (x1, ..., xn).

⋗ Prop: (NAK): Let M be a finitely generated R-module and let m1, ...,mr be homogeneous elements whose
residue classes modulo mM form a k-basis for M/mM . Then m1, ...,mr generate M .

⋗ Cor: Let M be a finitely generated R-module. Then ALL homogeneous minimal systems of generators of M
have the same cardinality, namely, dimk M/mM .

⋗ Defn: (Degree Shifting): Let M be a graded R-module. Define M(j) to be the graded module whose
graded components are given by M(j)i = Mi+j .

⋗ Example: Let d ∈ N. R = R0⊕R1⊕· · · ThenR(−d)i = R−d+i, i.e., R(−d)0 = R−d = 0 · · ·R(−d)d+1 = R1 · · · :

degree 0 1 2 · · · d · · · d+ i · · ·

R R0 R1 R2 · · · Rd · · · Rd+i · · ·

R(−d) 0 0 0 · · · R0 · · · Ri · · ·

⋗ Defn: An R-module homomorphism ϕ : M → N is called homogeneous if ϕ(Mi) ⊆ Ni. (This is also sometimes
called degree preserving.)
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⋗ Example: The R-module homomorphism ϕ : R(−d) → R given by ϕ(x) = f · x (where f is a homogeneous
poly of degree d > 0) is homogeneous.

⋗ Defn: A free resolution
F• · · · → F2 → F1 → F0 → M → 0

of a graded R-module M is a graded free resolution if each ϕ as well as ε are homogeneous R-module homo-
morphisms.

⋗ Prop: Let U ⊆ F be a graded submodule of a free R-module F . Then the reduced GB of U consists of
homogeneous elements.

Proof. (sketch)

- S-elements between a pair of homogeneous elements are homogeneous.

- Remainders under division algorithm of a homogeneous element w.r.t. a set of homogeneous elements are
homogeneous.

- This implies there exists a GB of U that consists of homogeneous elements.

- Furthermore, to get a reduced GB:

⋄ we discard some of the elements in the GB

⋄ we take further remainders

⋄ we multiply by constants.

These all yield homogeneous elements.

⋗ Cor: Let M be a graded R-module. Then M admits a graded free resolution of length ≤ n = # variablles.

Proof. (sketch) Previous Prop + Prop that rij generate syz(U)+HST.

⋗ Defn: A minimal graded free resolution of a graded R-module M is a graded free resolution

F• : · · · ϕ2−→ F1
ϕ1−→ F0

ε−→ M → 0

such that ϕi(Fi) ⊆ mFi−1 for all i ≥ 1.

⋗ Rmk: The ranks of the free R-modules in a minimal graded free resolution of M are minimal among the ranks
of free modules in any given graded resolution of M .

⋗ Example: Fix f ∈ R, f ∈ Rd, d ≥ 1, (i.e., f is a homogeneous polynomial of degree d).

0 → R(−d)
f−→ R

ε−→ R/(f) → 0

- is a homogeneous free resolution of R/(f).

- is also minimal because ϕ1(R(−d)) ⊆ f · R ⊆ m · R. (Or, look at the matrix R(−d)
[f ]−−→ R and check all

of its entries are in m).

Oct. 16, 2013

⋗ Example: f is a homogeneous polynomial with degree d. We came up with 2 resolutions for R/(f):

0 → R(−d)
[f ]−−→ R → R/(f) → 0
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We could also resolve (non-minimally) like:

F• : 0 → R2

 1 f
−1 0


−−−−−−−→ R2 → R/(f) → 0

Note that this second one has elements (in the first column of the matrix) that are not in the maximal ideal
m. So, we actually have that the following exact sequence injects into the last one:

G• : 0 → R

 1
−1


−−−−→ R(e1 − e2) → 0

Let’s view this injection as a map of complexes:

0 → G• → F• → F•/G• → 0

Coincidentally, the cokernels give the minimal resolution!

⋗ Prop: Every finitely generated graded R-module M has a minimal graded free resolution.

Sketch of Proof: Start with any graded resolution F• of M . (We know such F• exists.) If there exists x ∈ Fi

such that ϕi(x) ̸∈ mFi−1 (i.e., F• is non-minimal). Then let

G• : 0 → 0 → · · · → 0 → Gi → Gi−1 → 0

is an exact complex. There is a sequence of complexes

0 → G• → F• → F•/G• → 0

The l.e.s. in homology corresponding to this sequence of complexes implies F•/G• is exact, except for the 0 th
spot, where the cokernel is M , i.e., F•/G• is a resolution of M .

Continue this process with F•/G• instead of F• until a minimal resolution is obtained.

⋗ Prop: Let M be a finitely generated R-module. Then any two graded minimal free resolutions of M are
isomorphic, i.e., if F• and G• are minimal free resolutions of M , there exist degree-preserving isomorphisms
µi : Fi → Gi that make the following commute:

F• : · · · // Fi
ϕi //

∼=
��

Fi−1
//

∼=
��

· · ·

G• : · · · // Gi
ϕi // Gi−1

// · · ·

⋗ Cor: The ranks of the modules Fi in a minimal free resolution of M only depend on M (not on the choice of
minimal resolution).

⋗ Refinement: Each Fi = ⊕∞
j=1R

βij (−j) and the βij only depend on M (not on the choice of minimal free
resolution).

⋗ Defn: The numbers βij as above are called the graded Betti numbers of M .

⋗ Numerical data attached to a finitely generated graded R-module M . Graded Betti numbers (often summarized
in a Betti diagram (or Betti table) is a matrix in which βi,i+j appears in position (i, j).

⋗ Example: I = x2
1 − x2x3, x

2
3x4, x1x2x3, x

3
4). A graded minimal free resolution of R/I is:

0 → R(−8) → R2(−6)⊕R3(−7) → R6(−5)⊕R(−6) → R(−2)⊕R3(−3) → R → R/I → 0
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This gives Betti numbers:

β4,8 = 1 β3,6 = 2 β2,5 = 6 β1,2 = 1 β00 = 1

β3,7 = 3 β2,6 = 1 β1,3 = 3

Putting them in a table, we have something like:

0 1 2 3 4
0 1
1 1
2 3
3 6 2
4 1 3
5 1

⋗ The total Betti numbers: βi =
∑

j≥0 βij

⋗ The projective dimension is the index of last column in the Betti table.

pd(M) = max{i : ∃j, βij ̸= 0}.

⋗ The regularity is the index of the last row in the Betti table:

reg(M) = max{j : βi,i+j ̸= 0 for some i}.

⋗ Defn: The numerical function HM : Z → Z≥0 with HM (i) = dimk Mi is called the Hilbert function of the
graded module M .

The formal (Laurent) series HSM (t) =
∑

i∈Z HM (i)ti.

⋗ Facts:

1. HSR(t) =
1

(1−t)n , where n = number of variables of R = k[x1, ..., xn].

2. HSR(−d)(t) =
td

(1−t)n , where R = k[x1, ..., xn].

3. A s.e.s. of graded R-modules and homogeneous R-module maps

0 → A → B → C → 0

gives
HSB(t) = HSA(t) +HSC(t).

Proof. We can restrict to s.e.s. of k-vector spaces 0 → Ai → Bi → Ci → 0, and then done by dimensions
of vector spaces: dimk Bi = dimk Ai + dimk Ci.

⋗ Prop: If 0 → Fp → Fp−1 → · · · → F1 → F0 → M → 0 is a minimal graded free resolution of M (over R), then

HSM (t) = HSF0
(t)−HSF1

(t)+HSF2
(t)−· · ·+(−1)pHSFp

(t). Each of these is a sum HSRβij (−j)(t) =
βijt

j

(1−t)n .

Thus the HSM (t) =
∑

i,j(−1)i
βijt

j

(1−t)n .

⋗ Example: HSS/I(t) =
1−t2−3t3+6t5−t6−3t7+t8

(1−t)4 .

Oct. 18, 2013
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⋗

Oct. 23, 2013

⋗ Computing graded Betti numbers using Tor:

⋗ Let R = k[x1, ..., xn].

⋗ Defn: Let M and N be finitely generated graded R-modules. Take a free resolution of N :

F• : 0 → Fp
dp−→ Fp−1 → · · · → F1 → F0 → N → 0

Tensor F• with M and get a (no longer exact) complex:

M ⊗ F• : 0 → M ⊗R Fp
d̃p−→ · · · → M ⊗R F1 → M ⊗R F0

Then

TorRi (M,N) =
ker(d̃i)

im(d̃i+1)

is the ith homology of the complex M ⊗ F•.

Note: If M and N are graded and F• is a homogeneous (graded) resolution, then TorRi (M,N) are graded
R-modules, i.e., TorRi (M,N) = ⊕j∈Z Tor

R
i (M,N)j .

⋗ Prop: βij(M) = dimk(Tor
R
i (k,M))j .

Proof. To compute TorRi (k,M) one considers a minimal graded free resolution of M

F• : 0 → Fp → Fp−1 → · · · → Fi+1
di+1−−−→ Fi → · · · → F0 → M → 0

Then

k ⊗ F• : 0 → k ⊗ Fp → k ⊗ Fp−1 → · · · → k ⊗ Fi+1
d̃i+1−−−→ k ⊗ Fi → · · · → k ⊗ F0 → k ⊗M → 0

is a complex of k-vector spaces, where d̃i(λ⊗ f) = λ⊗ di(f).

Claim: d̃i ≡ 0. To see this: If F• is a minimal graded free resolution, then im di ⊆ mFi−1, and so di(f) =∑r
i=1 migi, {g1, ..., gr} is a basis for Fi−1 as a free R-module. Hence

d̃i(λ⊗ f) = λ⊗ di(f) = λ⊗ (
∑

migi) =

r∑
i=1

(λmi ⊗ gi) =
∑

(0⊗ gi) = 0.

Therefore,

TorRi (k,M) = k ⊗ Fi = k ⊗R (
⊕
j∈Z

Rβij (−j)) =
⊕
j∈Z

kβij (−j),

where this last is the decomposition of TorRi (k,M) into graded pieces. Hence TorRi (k,M)j = kβij (−j). Thus

dimk(Tor
R
i (k,M))j = βij .

⋗ Remarks:

1. Tensor product is symmetric, i.e., TorR0 (M,N) = M ⊗R N ∼= N ⊗R M = TorR0 (N,M).

2. Tor is also symmetric: TorRi (M,N) ∼= TR
i (N,M).

⋗ Cor 1: βij(M) = dimk(Tor
R
i (k,M))j = dimk(Tor

R
i (M,k))j .
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⋗ Cor 2: One can compute βij ’s by taking a minimal free resolution of k (i.e., the Koszul complex K•) and
tensoring with M .

Tori(M,k) = Hi(M ⊗R K•).

⋗ Multigraded (Zn-graded, fine graded) modules:

⋗ -
R =

⊕
α∈Nn

Rα =
⊕
α∈Nn

spank < xα >

gives R a Nn-graded structure.

-
M =

⊕
β∈Zn

Mβ

such that RαMβ ⊆ Mα+β is a Zn-graded R-module.

⋗ Examples:

1. If I is a monomial ideal, then I is a Zn-graded R-module.

2. If I is a monomial ideal, then R/I is a Zn-graded R-module.

⋗ Zn-graded Hilbert Function:
HFM (β) = dimk(Mβ)

⋗ Zn-graded Hilbert Series

HSM (t1, ..., tn) =
∑
β∈Zn

HFM (β) · tβ

⋗ Zn-graded modules admit resolutions that are multi-graded (i.e., the differentials preserve multi-degrees).

⋗ Multigraded Betti numbers: βiα, i ∈ N ∪ {0}, α ∈ Zn, are given by βiα(M) = dimk(Fi)α, where Fi= the gree
R-module in position i of a minimal free multigraded resolution of M .

⋗ Goal: Describe βiα(R/I), where I is a monomial ideal.

⋗ (Abstract) Simplicial complexes and their homology:

⋗ Defn: An (abstract) simplicial complex ∆ on {1, 2, ..., n} is a collection of subsets of {1, 2, ..., n} closed under
the operation of taking subsets, i.e., if T ∈ ∆ and τ ⊆ T , then τ ∈ ∆.

⋗ Example: The abstract 2-simplex (a.k.a. the triangle) is a simplicial complex on {1, 2, 3} given by

∆ = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3},∅}

⋗ The abstract n-simplex ∆n = P({1, ..., n}).

⋗ The abstract n-simplex has a geometric realization given by all complex combinations of n + 1 affinely inde-
pendent points.

⋗ Any abstract simplicial complex has a geometric realization (see Topology).

⋗ Defn: Given a simplicial complex ∆, an element σ ∈ ∆ such that σ has cardinality i+1 is called an i-face (or
an i-dimensional face). (Note: ∅ is the unique −1-face.)

⋗ The dimension of ∆ is dim(∆) = max{i : i− faces exist in ∆}.

⋗ The f -vector of ∆ is the vector (f−1, f0, f1, ..., fdim(∆)), where fi is the number of i-faces of ∆.

⋗ Maximal faces (with respect to containment) are called facets.

⋗ Example: Consider the shape ∆ with 5 vertices, with edges {13}, {3, 4}, {1, 2}, {2, 3}, and {1, 2, 3}. Then this
has f -vector (1, 5, 5, 1). (i.e., 1 empty set, 5 vertices, 5 edges, and 1 triangle.) The facets in this example are
{1, 2, 3} and {3, 4} and {2, 4} and {5}. Also dim(∆) = 2.
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Oct. 25, 2013

⋗

Oct. 28, 2013

⋗ Last time: Stanley-Reisher correspondence

⋗
{simplicial complexes} ↔bij {squarefree monomial ideals},

where the map is given by:
∆ 7→ I∆ :=< xτ : τ ̸∈ ∆ >

⋗ Notation:

- If α = (α1, ..., αn), then xα = xα1
1 · · ·xαn

n .

- If σ ⊂ {1, ..., n}, σ = {i1, i2, ..., it}, then xσ = xi1xi2 · · ·xit is a squarefree monomial.

- If α = (α1, ..., αn), then supp(α) = {i : αi ̸= 0} (supp : multi-exponents → subsets of {1, ..., n}).

- If σ ⊂ {1, ..., n}, then char(σ) = (α1, ..., αn), where αi =

{
0 i ̸∈ σ

1 i ∈ σ
.

⋗ Example: ∆ = simplicial complex from before.

(including 123 also).

We computed the f -vector is (1, 5, 5, 1). Also,

HSR/I∆ = 1 + 5
1

(1− t)
+ 5

t2

(1− t)2
+ 1

t3

(1− t)3
=

1 + 2t− 2t2

(1− t)3

The h-vector is (1, 2,−2). (The coefficients of the numerator of HS.)

Stanley’s Magic Triangle: Rule: Entry to the NE-entry the NW. Build a triangle with rows from f−1, f0, f1, f2, ...
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1

1 5

1 4 5

1 3 1 1

1 2 −2 0

⋗ Theorem:

(1)

HSR/I∆(x1, ..., xn) =

∑
σ∈∆(

∏
i∈σ xi

∏
j ̸∈σ(1− xj))

(1− x1)(1− x2) · · · (1− xn)
.

(2)

HSR/I∆(t) =

∑d+1
i=0 fi−1t

i(1− t)n−i

(1− t)n
=

d+1∑
i=0

fi−1t
i

(1− t)i
.

Proof. (1) By Lemma,

HSR/I∆(x1, ..., xn) =
∑

xα ̸∈I∆

xα =
∑
σ∈∆

 ∑
supp(α)=σ

xα

 =
∑
σ∈∆

∏
i∈σ xi∏

i∈σ(1− xi)
=

∑
σ∈∆

∏
i∈σ xi

∏
j ̸∈σ(1− xj)

(1− x1)(1− x2) · · · (1− xn)
.

Some people call the numerator of the last expression the k-polynomial of R/I∆.

(2)

HSR/I∆(t) = HSR/I∆(t, t, ..., t) =

∑
σ∈∆ t|σ|(1− t)n−|σ|

(1− t)n
=

∑d+1
i=0 fi−1t

i(1− t)n−i

(1− t)n
=

d+1∑
i=0

fi−1
ti

(1− t)i
=

h(t)

(1− t)d+1

(d=dimension of ∆ – largest face has cardinality d+ 1.)

⋗ Defn: The last line above shows that we can always write HSR/I∆ as

HSR/I∆(t) =
h0 + h1t+ · · ·+ hd+1t

d+1

(1− t)d+1
,

where d = dim(∆). The vector (h0, h1, ..., hd+1) is called the h-vector of R/I∆.

⋗ Rmk: The Krull dimension of R/I∆ is d + 1. (In general, we can write for a standard graded R-module M :

HSM (t) =
h0+h1t+···+hdim(M)t

dim(M)

(1−t)dim(M) . )

⋗ Cor: (Going between h-vector and f -vector.)

hj =

j∑
i=0

(−1)j−i

(
d− i

j − i

)
fi−1
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(This first is equivalent to doing Stanley’s triangle.)

fj =

j+1∑
i=0

(
d− i

j + 1− i

)
hi

⋗ Alexander duality:

⋗ Defn: If ∆ is a simplicial complex, then the Alexander dual simplicial complex is ∆∗ = ∆∨ = {τ : τ ̸∈ ∆}

⋗ Notation: Given σ ⊂ {1, 2, ..., n}, σ = {i1, ..., is}, denote by

Pσ =< xi1 , ..., xis >

(this is a prime ideal).

⋗ Defn: Suppose I∆ is a squarefree monomial ideal. Say I∆ =< xσ1
, ..., xσn

>=< xchar(σ1), ..., xchar(σs) >.
Define the Alexander dual ideal of I∆ to be

I∗∆ =

s⋂
i=1

Pσi
.

⋗ Theorem:

(1) (∆∗)∗ = ∆ (duality)

(2) I∆∗ = I∗∆(= (I∆)
∗) (homework)

Consequently, I∗∆ =< xσ : σ ∈ ∆ > (the SR ideal I∆∗).

⋗ Example: Let ∆ be as above:

Then facets of ∆∗ are complements of minimal non-faces of ∆. So,

∆∗ =

(Image here: we end up with triangles 134, 142, 235, and 15, 12)

Then
I∆ =< x2x3x4, x1x4, x1x5, x2x5, x3x5, x4x5 >

and
I∗∆ =< x2, x3, x4 > ∩ < x1, x4 > ∩ < x1, x5 > ∩ < x2, x5 > ∩ < x3, x5 > ∩ < x4, x5 >

But also, I∗∆ = I∆∗ =< x1x2x3x4, x1x2x5, x1x3x5, x4x5 >. Note also,

I∆ = I∗∗∆ =< x1, x2, x3, x4 > ∩ < x1, x2, x5 > ∩ < x1, x3, x5 > ∩ < x4, x5 > .
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Oct. 30, 2013

⋗ Hochster’s Theorem: Given a simplicial complex ∆, all non-zero Betti numbers of I∆ and of R/I∆ occur in
squarefree (multi) degrees and are given by:

βi,α(I∆) = βi+1,α(R/I∆) = dimk(H̃i−1(link∆∗ supp(α)),

for α a squarefree multi-degree.

⋗ Defn: Given a simplicial complex ∆ and a set σ,

link∆(σ) = {τ ∈ ∆ : τ ∪ σ ∈ ∆, τ ∩ σ = ∅}.

⋗ Rmk: links are simplicial complexes.

⋗ Example: Same as before: ∆ and ∆∗. Here,

link∆∗({1}) = {(24), (23), (43), (5)}.

Also,
link∆∗({3}) = {(14), (24), (12), (25)}.

The reduced homologies:

H̃i(link∆∗({1})) =


0 i = −1

k i = 0

k i = 1

0 i ≥ 2

and

H̃i(link∆∗({3})) =


0 i = −1

0 i = 0

k i = 1

0 i ≥ 2

This tells us about the betti numbers :

βi,(0,1,1,1,1)(I∆) =


0 i = 0

1 i = 1

1 i = 2

0 i ≥ 3

and

βi,(1,1,0,1,1)(I∆) =


0 i = 0, 1

1 i = 2

0 i ≥ 3

⋗ The Koszul complex R = k[x1, ..., xn]

- For each variable xi, define a new variable ei

- For each monomial g = xi1xi2 · · ·xij , set Dg = ei1 ∧ · · · ∧ eij where we require er ∧ es = −es ∧ er (in char
2 also er ∧ er = 0).

So, Dg = 0 whenever g is not square free.

Assign multideg(Dg) = multideg(g). (Or for standard graded: deg(Dg) = deg(g).)
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⋗ Defn: The Koszul complex is a complex of R-modules:

K• : 0 → Fn → Fn−1 → · · · → F1 → F0 → F−1 = k → 0

(subscripts correspond to homological degree) where

- Fi is the freeR-module on basis {Dg : g is square free and deg(g) = i}, so Fi = R(ni)(−i) =
⊕

deg(g)=i R(−multideg(g)).

- di(Dg) =
∑

j∈supp(g) sign(j, supp(g))×j Dg/×j (This is similar to the topological differential of the chain

complex of ∆n−1.)

⋗ Fact: K• is a minimal free resolution of k.

⋗ Recall: βi,α(M) = dimk(Tori(k,M))α = dimk(Hi(K• ⊗M))α

⋗ Defn: Let I be a monomial ideal. Then K•(I) := I ⊗R K• is the complex (not necessarily exact)

0 → I ⊗R Fn → I ⊗R Fn−1 → · · · → I ⊗R F0 → I/mI → 0.

⋗ Note: The module I ⊗R Fi has basis {f ⊗Df : f is a monomial in I} (i.e., deg(g) = i, g is squarefree).

⋗ Note: K•(I) is a multi-graded complex (di’s preserve multidegree).

⋗ key point: K•(I) will break into a direct sum of complexes of k-vector spaces

K•(I) =
⊕
α∈Zn

(K•(I))α =⇒ Hi(K•(I)) =
⊕
α∈Zn

Hi(K•(I))α,

i.e., Hi(K•(I))α) = Hi(K•(I)α).

⋗ Outcome: βi,α(I) = dimk Hi(K•(I)α).

Proof of Hochster’s Theorem: We proceed as follows:

Step 1. Claim: There is a bijection between the k-basis of (K•(I))α and faces of link∆∗(supp(α)).

A basis for (I∆ ⊗ Fi)α is B = {f ⊗ Dg : f ∈ I∆, g sqfree,deg(g) = i,multideg(f ⊗ Dg) = α ⇐⇒
multideg(fg) = α ⇐⇒ fg = xα}.
So there is a bijection:

B ↔ {g : g is square-free , g|xα,deg(g) = i, xα/g ∈ I∆} = {g : g is square-free ,deg(g) = i, g|xα, supp(xα/g) ̸∈ ∆}

DIAGRAM: [n] ⊇ supp(α) ⊇ supp(g).

Note supp(α) ∪ supp(g) ̸∈ ∆. Hence supp(α)∪ supp(g) is a complement of a non-face of ∆. By definition,
this is true if and only if supp(α) ∪ supp(g) ∈ ∆∗. Again by definition of the Alexander dual, if and only
if supp(g) ∈ link∆∗(supp(α). (The fact that supp(α) ∩ supp(g) = ∅ is given by g|xα.

We therefore have the bijection

B ↔ {g : g sqfree ,deg(g) = i, supp(g) ∈ link∆∗(supp(α))}.

Therefore (I ⊗Fi)α = kfi−1(link∆∗ supp(α)), where the one on the left is the entry of K•(I)α in homological
degree i and on the right is the entry of something else.

Nov. 1, 2013

⋗ Theorem (Hochster): βiα(I∆) = βi+1,α(R/I∆) = dimk H̃i−1(link∆∗ supp(α))
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Proof. Starting with a review from last time...

Step 1: We found that a basis for the free module in homological degree i of (K•(I∆))α is given by {fDg = Bg :
deg(g) = i, supp(g) ∈ link∆∗(supp(α)), f = xα/g}.
Let Bg = fDg.

Step 2: Consider the chain complex of link∆∗(supp(α)).

C̃• : 0 → Cn → Cn−1 → · · · → C1 → C0 → 0

where Ci is a k-vector space with basis corresponding to i-dimensional faces of link∆∗(supp(α)).

Let Cg be the basis element in Ci corresponding to supp(g) (here g is a squarefree monomial such that
g|xα).

This means that dim(supp(g)) = i, hence | supp(g)| = −1 = i, and so | supp(g)| = i+1 =⇒ deg(g) = i+1.

Define a map: ϕ : (K•(I∆))α → C̃ by setting ϕ(Bg) = Cg, for any squarefree g with g|xα and deg(g) = i+1.

0 // I∆ ⊗R Fn
//

&&

I∆ ⊗ Fn−1
//

''

I∆ ⊗R Fn−2
//

%%

· · · I/mI // 0

0 // Cn
// Cn−1

// Cn−2
// · · · // C−1

// C−2

Differential of K•(I) was d(fDg) =
∑

j∈supp(g) sign(j)fxjDg/xi (Koszul differential).

Differential of C̃• was ∂(Cg) =
∑

j∈supp(g) sign(j)Cg/xj (topological differential).

Therefore:

(Tori(I∆)α) = Hi(K • (I)α) = Hi−1(C̃(link∆∗(supp(α)))) = H̃i−1(link∆∗(supp(α)))

This implies
βiα(I∆) = dimTori(I∆)α = dim H̃i−1(link∆∗(supp(α)))

⋗ Note: Same proof for non-squarefree I shows that

βiα(I) = H̃i−1(K
α(I)),

where Kα(I) = simplicial complex consisting of {supp(g), g is squarefree, α/g ∈ I}.

⋗ Theorem (Alexander duality - topological): If ∆ is a simplicial complex on n vertices, then H̃n−i−2(∆; k) =

H̃i−1(∆∗; k) = (H̃i−1(∆
∗; k))∗. Consequently, dimk H̃n−i−2(∆) = dimk H̃i−1(∆

∗).

⋗ Defn: If ∆ is a simplicial complex, then ∆[α] = {τ : τ ∈ ∆, τ ⊆ supp(α)} is a simplicial complex.

⋗ Lemma: link∆∗(supp(α)) = (∆[α])∗

⋗ Theorem (Hochster’s Theorem - dual version):

βiα(I∆) = dim H̃i−1(link∆∗(supp(α))) = dim H̃i−1((∆[α])∗) = dimk H̃n−i−2(∆[α]).

⋗ Theorem (Terai):
reg(R/I∆)− 1 = reg(I∆) = pd(R/I∆∗) = pd(I∆∗) + 1

Proof.

reg(I∆) = max{j : βi,i+j(I∆) ̸= 0 for some value of i}
= max{j : there exists a squarefree multidegree α and i ≥ 0 s/t deg(xα) = i+ j and βiα(I∆) ̸= 0}
= max{j : H̃n−i−2(∆[α]) ̸= 0 for some i ≥ 0, n = | supp(α)| = deg(xα) = i+ j}
= max{j : H̃j−2(∆[α]) ̸= 0 for some i ≥ 0, α squarefree, | supp(α)| = i+ j}
= max{j : βj−1,α(I∆∗) ̸= 0 for some squarefree α}
= pd(I∆∗) + 1

= pd(R/I∆∗).
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⋗ Theorem (Eagon-Reiner): I∆ has a linear resolution if and only if R/I∆∗ is CM.

⋗ Defn: An R-module has a linear resolution if the Betti table looks like: (If reg(M) = d.)

0 1 2 3 · · ·
...
d * * * *
...

equivalently,

- all the differentials in the minimal free resolution of M over R are linear (matrices representing these maps
have linear entries).

- reg(M) is the degree of the generators of M .

Proof of Eagen-Reiner: I∆ has linear resolution ⇐⇒ reg(I∆) = degree of the minimal generators of I∆ (All
mingens of I∆ must have same degree.)
⇐⇒ pd(R/I∆∗) = cardinality of the minimal non-faces of ∆.
⇐⇒ pd(R/I∆∗) = n−cardinality of the facets of ∆∗

⇐⇒ cardinality of the facets of ∆∗ is n− pd(R/I∆∗)
⇐⇒ dim(∆∗) + 1 = n− pd(R/I∆∗)
⇐⇒ dim(R/I∆∗) = n− pd(R/I∆∗) (dimension is Krull here).
⇐⇒ (Auslander Buchsbaum) R/I∆∗ is CM.

Nov. 4, 2013

⋗ This week: Borel fixed monomial ideals; generic initial ideals.

⋗ In the following, the characteristic of k is 0 and all the ideals are standard graded (Z-graded).

⋗ The matrix group GLn(k) acts on R = k[x1, ..., xn] as follows:

if g = (gij) ∈ GLn(k), then gf = f(gx1, ..., gxn), where gxj =
∑n

i=1 gijxi.

⋗ Examples:

Matrix group Name Invariant ideals
GLn(k) General linear 0,md, ∀d
Bn(k) Borel group Borel-fixed ideals?
Tn(k) Torus group all monomial ideals

Where Bn(k) is the group of upper triangular invertible matrices; Tn(k) is the group of invertible diagonal
matrices.

⋗ Defn: An ideal I ⊆ R is Borel fixed if gI = I for every g ∈ Bn(k).

⋗ Prop: (Characterization of Borel-fixed ideals)

I is aBorel fixed ideal if and only if

(1) I is a monomial ideal, and

(2) - for all monomials m ∈ I, for every i < j, and

- if m is divisible by xt
j but not by xt+1

j , then xs
i
m
xs
j
∈ I, for all s ≤ t.12

⋗ Note: In the proposition, actually (2) ⇐⇒ (2′): If m ∈ I is a monomial divisible by xj and i < j, then
xi

m
xj

∈ I.

12In characteristic p, we would need to change this to s <p t.
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⋗ Rmk: Bn(k) is generated by Tn(k) together with the upper-triangular elementary matrices: Γc
ij is the matrix

with 1s on the diagonal and c in the i, j spot, so that Γc
ij(xj) = xj + cxi, Γ

c
ijxl = xl for all l ̸= j.

Proof of Prop: ⇒: Le I be a Borel-fixed ideal. Since Tn(k) ⊆ Bn(k), we also have I is Tn(k)-fixed. Therefore
I is a monomial ideal.

Let m ∈ I. Suppose m = xt
j · m′, where m′ is not divisible by xt

j . Then Γc
ijm = Γc

ij(x
t
j) · Γij(m

′) =

(xj + cxi)
t · m′ = m′ ∑t

s=0

(
t
s

)
xt−s
j · (cxi)

s = m′ ∑t
s=0 cs

(
t
s

) (
xi

xj

)s

· xt
j = m′xt

j

∑t
s=0 c

s
(
t
s

) (
xi

xj

)s

∈ I. Since

I is Borel-fixed, we have Γc
ijm ∈ I. As I is a monomial ideal, m·

(
xi

xj

)s

∈ I, for every 0 ≤ s ≤ t. This implies (2).

⇐: The above equation and (2) imply Γc
ijm ∈ I for any monomial m ∈ I. Since I is a monomial ideal,

Tn(k)I = I. Therefore Bn(k) fixes I.

⋗ Examples of Borel-fixed ideals:

(1) When char(k) = 0 in R = k[x1, x2], the Borel-fixed ideals are “initial lex-segments,” e.g., (x3
1, x

2
1x2, x1x

2
2).

(2) In 3 variables, above not true any more. E.g., (x3
1, x

2
1x2, x

2
1x3) is Borel-fixed but not lex-segment.

(3) In characteristic p, (xpe

1 , ..., xpe

n ) is Borel-fixed.

(4) Products, sums, and intersections of Borel-fixed ideals are Borel-fixed.

⋗ Generic initial ideals: (Fix a monomial order < on R.)

⋗ Theorem: Let I be a homogeneous ideal. There is a Zariski open set ∅ ̸= U ⊆ GLn(k) = An2

and a monomial
ideal J , such that

LT (gI) = J, for any g ∈ I

⋗ Defn: J as in the theorem is called the generic initial ideal of I. Usually, we write J = gin(I). (Depends on
monomial ordering.)

⋗ Notations: Say V ⊆ Rd is a vector space of homogeneous polynomials of degree d, dim(V ) = t. Then V can
be represented as a 1-dimensional vector space

L = ∧tV ⊆ ∧tRd

with basis of L given by f1 ∧ f2 ∧ · · · ∧ ft, where {f1, ..., ft} is a basis of V .

If m1, ...,mt are monomials in Rd we say m1 ∧ · · · ∧mt is a monomial in
∧t

Rd.

We say m1 ∧ · · · ∧mt is a normal expression if m1 > · · · > mt.

We order monomials of
∧t

Rd be ordering their normal expressions lexicographically (i.e., if m = m1 ∧ · · · ∧mt

and m′ = m′
1 ∧ · · · ∧m′

t are normal expressions, then m > m′ in
∧t

Rd if for the smallest i such taht mi ̸= m′
i

we have that mi > m′
i w.r.t. the monomial order on R.

Nov. 6, 2013

⋗ Today: any characteristic for k, want k to be infinite.

⋗ Theorem (Galligo, Bayer-Stillman): Let I be a homogeneous ideal. Then there is a Zariski open set

U ⊆ GLn(k) ⊆ Mn(k) ∼= An2

and there is a monomial ideal J such that LT (gI) = J , for every g ∈ U . (J = gin(I))
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⋗ Remark: I being homogeneous means that I =
⊕

d≥0 Id (where Id is the span of the homogeneous elements
of I of degree d). Fix d; say {f1, ..., ft} is a basis for Id ⊆ Rd (k-vector subspace). We have a way to identify
t-dimensional subspaces of Rd with affine 1-dimensional subspaces

∧t
Rd.

Id = span{f1, ..., ft} ↔ spank{f1 ∧ · · · ∧ ft} ⊆
t∧
Rd

(the last is a
((n+d−1

d−1 )
t

)
-dimensional k-vector space).

The action of GLn(k) on R induces the following action on
∧t

Rd:

g(f1 ∧ · · · ∧ ft) = g(f1) ∧ · · · ∧ g(ft)

Proof of theorem: Let g = (gij) be a matrix with gij as distinct variables.

g(f1) ∧ · · · ∧ g(ft) =
∑

m= mon in ∧tRd

Pm,d(gij)m,

where Pm,d is a polynomial, m = m1,d ∧ · · · ∧mt,d, and mi,d are monomials of degree d.

More concrete way to come up with Pm,d(gij): g(f1), ..., g(ft) ∈ Rd = span of the
(
n+d−1
d−1

)
monomials of degree

d in R. Therefore there exists a matrix of size t ×
(
n+d−1
d−1

)
in which we label rows by g(fi) and columns by

monomials of Rd. The rows will be the coefficients of g(fi) written in the monomial basis of Rd. Then Pm,d(gij)
is the determinant of the t× t minor of the matrix corresponding to columns indexed by m1,d, ...,mt,d.

Let md = max{m : Pm,d(gij) ̸≡ 0}. Say md = md,1 ∧ · · · ∧md,t. Let Ud = {g ∈ GLn(k) : Pm,d(gi,j) ̸= 0} ≠ ∅
and Zariski open.

We have that for every g ∈ Ud (LT (gI))d = (md,1, ...,md,t).

Let Jd = (md,1,md,2, ...,md,t). Also set J =
⊕

d≥0 Jd.

Claim 1: J is an ideal.

To see this, it suffices to show that R1J ⊆ J , in fact enough to show R1Jd ⊆ Jd+1 for all d (since we already
know it is a k-vector space.) We know R1Jd ⊆ Jd (since Jd is an ideal). Note that Ud and Ud+1 are nonempty
Zariski open sets, so Ud ∩ Ud+1 ̸= ∅. Hence there exists g ∈ Ud ∩ Ud+1. Then

R1Jd = R1(LT (gI))d ⊆ (LT (gI))d+1 = Jd+1.

Set U =
⋂

d≥0 Ud.

Claim 2: U is a in fact a finite intersection. By HBT, J has a (unique) finite set of monomial generators. Let
e=maximum of the degrees of these generators.

Claim 2 (refined):
⋂

d≥0 Ud =
⋂e

d=0 Ud.

Need to show “⊇”. Let g ∈
⋂e

d=0 Ud. Then (LT (gI))d = Jd, for every d ≤ e. Hence LT (gI) contains all
minimal generators of J . Thus LT (gI) ⊇ J .

Trick:

- LT (gI) ⊇ J

- HFLT (gI)(t) = HFgI(t), meaning dimk LT (gI)d = dimk(gI)d = dimk(Id) = dimk(Jd) for each d.

Thus LT (gI)d = Jd for each d, and therefore g ∈ Ud for all d means g ∈
⋂

d≥0 Ud.

Claim 2 now tells us that U =
⋂

d≥0 Ud =
⋂e

d=0 is non-empty Zariski open.

Nov. 8, 2013
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⋗ Gone for panel at augie.

Nov. 11, 2013

⋗ Email with paper.

⋗ The Eliahou-Kervaire Resolution.

⋗ We work in R = k[x1, ..., xn] where char(k) = 0, R has the Zn-grading.

⋗ Defn: For a monomial m ∈ R, let max(m) = max supp(m) and min(m) = min supp(m).

⋗ Theorem (Eliahou-Kervaire): Let I be a Borel-fixed (monomial) ideal in R. (in char 0) Suppose I =<
m1, ...,mr > (min gens) and let M be the module of first syzygies on the generators of I. Then

(1) There exists a monomial ordering on Rr such that LT (M) has linear resolution which is a direct sum of
Koszul complexes.

(2) βi,α(R
r/M) = βi,α(R

r/LT (M)).

(3) βi,j(I) =
∑

deg(ml)=j−1

(
max(ml)−1

i

)
and βi(I) =

∑r
l=1

(
max(ml)−1

i

)
(4) pd(I) = max{max(mi) − 1 : 1 ≤ i ≤ r} (i.e., the max index of a variable appearing in any non minimal

gen of I -1.

(5) reg(I)= highest degree of a minimal monomial generator of I.

(6) HS(R/I) =
1−

∑r
i=1 mi

∏max(mi)−1
j=1 (1− xj)∏r

i=1(1− xi)

Proof. Method 1: (Iterated mapping cone)
Lemma: Order the minimal generators m1, ...,mr of I in increasing order according to GrRevLex. Then
(m1, ...,mi) : mi+1 = (x1, ..., xmax(mi+1)−1) (Proof: follows from exchange property of Borel-fixed ideals.)
Proof of E-K: Proceed by induction on r using

0 → R

(m1, ...,mr−1) : mr
→ R

(m1, ...,mr−1)
→ R

(m1, ....,mr)
→ 0

The first term is K.(x1, ..., xmax(mr)−1), the middle one is known by inductive hypothesis. The last one: form
the mapping cone and observe that it is a minimal resolution of R/I.

Method 2: (using GBs)
Step 0:
Lemma: Let I =< m1, ...,mr > be Borel fixed. Every monomial m ∈ I can be written uniquely as a product
of the form

m = mi ·m′

such that max(mi) ≤ min(m′).

Step 1:
Set ui = max(mi). Order the generators m1, ...,mr decreasingly by ui, for generators with the same ui, de-
creasingly by the power of xui

they contain.

Step 2:
Recall M = syz(I) (i.e., 1st syzygy module of I). We build an element of M for each pair (j, u) so that
1 ≤ j ≤ r and u < max(mj) = uj .

Consider m = xu ·mj ∈ I. (xu is NOT as in the lemma.) The Lemma gives a different way to write m = mi ·m′

(with ui = max(mi) ≤ min(m′)). Thus xumj − m′mi = 0, so xuej − m′ei ∈ M , where M ⊆ Rr with basis
{e1, ..., er}, ei 7→ mi.
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Claim: We must have i > j. Note: min(m′) ≤ max(m) = max(mj) = uj . Also have ui ≤ min(m′). Therefore
ui ≤ uj . If ui < uj , then i > j (by the way we ordered the mi’s) If ui = uj , then all equalities above, and so,
in particular, min(m′) = ui = uj . This implies degxuj

(mi) < degxuj
(mj) = degxnj

(m). Again by the ordering

we put on the mi’s, we must have i > j.

Step 3:
Consider Position-over-Coefficient ordering on Rr with e1 > e1 > ... > er. This implies LT (xuej − m′ei)
because i > j =⇒ ej > ei.

Claim: B = {xuej −m′ei : 1 ≤ j ≤ r, u < uj} is a GB of M with respect to PoC order. (i.e., LT (M) =< xuej :
1 ≤ j ≤ r, u < uj > or equiv LT (M) = ⊕r

j=1 < x1, ..., xuj−1 > ej).

To see this, it’s enough to show that we don’t have m′′ej −m′ei ∈ M such that neither m′′ej or m′ei are in
LT (B).

Nov. 13, 2013

⋗ Finishing up EK resolution proof. I is Borel-fixed, M = syz(I), I =< m1, ...,mr >. We proved LT (M) =<
xuej : 1 ≤ j ≤ r, 1 ≤ u ≤ uj = max(mj)}, i.e., LT (M) =

⊕r
j=1 < x1, ..., xuj−1 > ej . This module LT (M) is

resolved by K• =
⊕r

j=1 K• < x1, ..., xuj−1 >. Every syzygy in K (Sij) produces a syzygy rij for M . In fact,
these rijs are minimal generators for syzygy modules of M . (They even form GBs for these syzygy modules.)
In fact, βi,j(M) = βi,j(LT (M)) =

∑r
i=1

(
uj−1

i

)
.

⋗ Relationship between βij ’s for I and LT<(I). Method for computing βij : None for I.

In LT (I), monomial ideal βij computed by LCM lattice.

Polarization gives Pol(LT<(I)).

I →→ LT<(I) →→ Pol(LT<(I))

For the first step, βij(LT<(I)) ≥ βij(I). For the second step, βij(LT<(I)) = βij(Pol(LT<(I))).

⋗ We are looking for a “tighter relationship” between βij(I) and βij(gin(I)).

⋗ Facts about gins:

⋗ Theorem (Galligo, Bayer-Stillman): If I is a homogeneous ideal, < any monomial order, then gin<(I) is
Borel-fixed.

⋗ Defn: A sequence of elements y1, ..., yd of R is a regular sequence on R/I if

1. yn is a nzd on R/I

2. yi is a nzd on R/(I + (y1, ..., yi−1))

⋗ Prop: If I =< m1, ...,mr > is Borel-fixed. I ⊆ R = k[x1, ..., xn]. Then there exists a maximal regular sequence
on R/I of the form xn, xn−1, ..., xp+1. In characteristic 0, p from above is the maximum index of any variable
that appears in the support of the monomial generators m1, ...,mr, i.e., p = pd(R/I) as given by E.K.

⋗ Fix <=GrRevLex on R.

⋗ Lemma 1: If f is a homogeneous polynomial, then xn|f ⇐⇒ xn|LT (f).

Proof. ⇒ is obvious; ⇐: monomials divisible by xn if <
GrRevLex

monomials not divisible by xn. xn|LT (f)
implies any term in f is divisible by xn.

⋗ Lemma 2: Let I be a homogeneous ideal. Then

1. LT (I + (xn)) = LT (I) + (xn). Furthermore, if {g1, ..., gt} is a GB of I, then {g1, ..., gt, xn} is a GB for
I + (xn).
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2. LT (I : (xn)) = LT (I) : (xn). Furthermore, if {g1, ..., gt} is a GB of I, then {gi/GCD(gi, xn)} is a GB for
I : (xn).

⋗ Corollary: xn is a nzd on R/I ⇐⇒ xn is a nzd on R/LT (I).

Proof. Uses Lemma 2(2).

⋗ Theorem (Bayer-Stillman): xn, xn−1, ..., xs form a regular sequence on R/I ⇐⇒ xn, xn−1, ..., xs form a
regular sequence on R/LT (I).

Proof. Iterate the corollary.

⋗ Theorem (Bayer-Stillman): k an infinite field, any characteristic. If I is a homogeneous ideal, then

pd(R/I) = pd(R/gin
GrRevLex

(I))

and
reg(R/I) = reg(R/gin

GrRevLex
(I)).

Nov. 15, 2013

⋗ Computer day.

Nov. 18, 2013

⋗ Deformations from GB theory13

⋗ Example: Let I =< x2 − y >⊆ k[x, y] = R. Under Lex with x > y, we have LT (I) =< x2 >. ( pictures of
parabolas: V (LT (I))−−V (x2 − αy)−−V (x2 − y), where α ∈ (0, 1).) Then connect this family of parabolas
/ double line into a surface (a third dimension, t).

Let S be the surface connecting the parabolas S = V (x2 − ty). The cross-sections of S corresponding to plane
t = α are given by the varieties V (x2 − αy.

Goal: Describe the family of varieties V (x2 − αy) where α ∈ k. It’s best to look at the map S → B, where
B = A1 corresponds to the t-axis.

This map gives a ring homomorphism k[t] → k[x, y, t]/ < x2−ty >. Therefore we can view k[x, y, t]/ < x2−ty >
as a k[t]-module.

“Good properties” of k[x, y, t]/ < x2 − ty > as a k[t]-module (i.e., flatness) ensures that the cross sections are
“not too different” from each other.

⋗ Defn: The fiber of S at a point B : Pα=the point t = α is the cross-sections through S by the plane t = α.
The coordinate ring Sα of the fiber at Pα is

Sα = k[x, y, t]/ < x2 − ty > ⊗k[t]k[t]/ < t− α >∼= k[x, y]/ < x2 − αy > .

⋗ We’ll see that (in general):

Sα
∼=

{
k[x, y]/ < x2 > α = 0

k[x, y]/ < x2 − y > ifα ̸= 0
.

(The fiber at t = 0 is k[x, y]/LT (I) and the fibers at t = α ̸= 0 are isomorphic to k[x, y]/I.)

⋗ The general setup for the GB deformation.

⋗ weight orders on monomials / non standard gradings

13Reference for today: Chapter 15 of Eisenbud.
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⋗ Defn: Given a weight vector w = (w1, ..., wn) ∈ Zn
≥0 we define:

- the weight of a monomial w(xα) :=
∑n

i=1 αiwi = α · w.
- the partial order on monomials given by w is defined by xα > xβ if w(xα) > w(xβ).

- the initial form of a polynomial f ∈ R is inw(f) =sum of terms of f that are maximal w.r.t. the partial
order given by w.

- For example, if f = x2 − y, if w = (1, 1), then inw(f) = x2. However, if w = (1, 2), then inw(f) = x2 − y.
If w = (1, 5), then inw(f) = −y.

- the ideal of initial forms of an ideal I is inw(I) =< inw(f) : f ∈ I >.

⋗ Theorem (Bayer): Let “<” be a monomial order on R = k[x1, ..., xn] and let I be an ideal of R. Then there
exists w ∈ Zn

≥0 such that LT<(I) = inw(I). (i.e., weighted orders generalize total monomial orders). Also, any
weighted order can be refined to a total order.

⋗ To construct the deformation: Let R̃ = R[t] = k[x1, ..., xn, t]. Fix w ∈ Zn
≥0 For a polynomial f ∈ R, define

f̃(x1, ..., xn, t) = tw(f) · f( x1

tw1
, ..., xn

twn ), where w(f) is the max weight of any monomial appearing in f . E.g.,

f = x2 − y, w = (1, 1), f̃(x, y, t) = t2( x
t2 − y

t x
2 − ty. Now w.r.t. the new weight vector w′ = (w, 1), then every

monomial m in f̃ has w′(m) = w(f). Or:

f̃(x, t) =
∑
m

cm ·m · tw(f)−w(m).

Given an ideal I ⊆ R, set Ĩ =< f̃(x1, ..., xn, t) : f ∈ I >.

Set S = V (Ĩ).

⋗ Theorem (Flat family): For any ideal I and any weight vector w,

1. R̃/Ĩ is free (hence flat) as a k[t]-module.

2. R̃/Ĩ ⊗k[t] k[t]/(t) ∼= R/inw(I)

3. R̃/Ĩ ⊗k[t] k[t, t
−1] ∼= R/I.

Nov. 20, 2013

⋗ Connections between I and LT (I).

⋗ Theorem (Macaulay): Let I ⊆ R be an ideal. For any monomial order > on R, the set B of all monomials
not in LT>(I) forms a k-vector space basis for R/I. (Also for R/LT<(I)).

Proof. - Linear independence: Assume that
∑

bi∈B λibi = 0 in R/I. This implies f :=
∑

bi∈B λibi ∈ I.
Hence LT (f) ∈ LT>(I). But all monomials in f are from B which are monomials NOT in LT (I).
Therefore f = 0.

- Spanning set: To show spank(B) = R/I ⇐⇒ spank(B ∪ I) = R (as k-vs.) Suppose spank(B ∪ I) ⊊ R.
Let f ∈ R\spank(B ∪ I) of minimal leading term. Consider LT (f).

1) If LT (f) ̸∈ LT<(I), hence LT (f) ∈ B. Then f − LT (f) ̸∈ spank(B ∪ I). (Contradiction

2) If LT (f) ∈ LT<(I). Then there exists g ∈ I such that LT (g) = LT (f). But then f−g ̸∈ spank(B∪I)
and also LT strictly smaller than that of f . (Contradiction)

⋗ Corollary: If I is a homogeneous ideal, then HFR/I(i) = HFR/LT (I)(i). (To see this: The left hand side
is just dimk(R/I)i and the right side is just dimk(R/LT (I))i. A basis for (R/I)i is given by elements of B of
degree i. A basis for the right is given by the same monomials, hence the dimensions must be equal, giving the
desired equality.)
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⋗ Recall the image from last time: surface S; V (I) at t = 1 and V (LT (I)) and t = 0.

⋗ We proposed a construction Ĩ =< f̃(x, t) : f ∈ I > w.r.t. weight vector w.

⋗ Theorem (Flat family): For any ideal I and any weight vector w ∈ Zn
≥0.

(1) R̃/Ĩ is free (hence flat) as a k[t]-module.

(2) R̃/Ĩ ⊗k[t] k[t]/(t) ∼= R/inw(I)

(3) R̃/Ĩ ⊗k[t] k[t, t
−1] ∼= (R/I)[t, t−1].14

Proof.

⋗ How to compute Ĩ:

Method 1: Compute a GB {g1, ..., gs} of I w.r.t. <w. Then Ĩ =< g̃1, ..., g̃s >.

Method 2: If I =< f1, ..., ft >, then Ĩ =< f̃1, ..., f̃t >: (t∞).

Nov. 22, 2013

⋗ Theorem (Peeva, 2005): Consecutive cancellations.

Let I be a homogeneous ideal and w ∈ Zn
≥0. Then

- βij(R/I) ≤ βij(R/inw(I))

- furthermore, the βij(R/I) can be obtained from βij(R/inw(I)) by a sequence of consecutive cancellations
(i.e., simultaneously decreasing βij and βi+1,j by 1 unit for some fixed i, j).

⋗ Example:

14different from first time
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Proof of theorem: Let R̃ and Ĩ be like last time.

Fact 1: Thm about flat family implied R̃/Ĩ is k[t]-free (in fact R̃/I =
⊕

b∈B b · k[t]). For α ∈ k, t−α is a nzd

on k[t] so t− α is also a nzd on R̃/Ĩ. (obviously, t− α is a nzd on R̃ = k[x1, ..., xn, t]).

Fact 2: If M is an S-module and u is a n.z.d. both on S and on M and if F· is a (minimal) free resolution of
M over S, then F· ⊗S S/(u) is a free resolution of M ⊗S S/(u) over S/(u).

Fact 3: We have two gradings on R̃: deg(xi) = 1, deg(t) = 0 or deg(xi) = wi, deg(t) = 1. Note that Ĩ is
homogeneous w.r.t. both of the gradings. It follows that R̃/Ĩ has a graded R̃-free resolution F̃· that is

- minimal (i.e., entries in the differential maps are in (x1, ..., xn, t))

- homogeneous w.r.t. both gradings.

Facts 1 & 2 (S = R̃ , M = R̃/Ĩ) give F̃·⊗R̃ R̃/(t−α) is a free resolution of R̃/Ĩ⊗R̃ R̃/(t−α) ∼= R̃/(Ĩ+(t−α))

over R̃/(t− α).

Let α = 0. Then F̃ |t=0 = F̃ ⊗R̃ R̃/(t) is a free resolution of R̃/Ĩ⊗ R̃/(t) ∼= R/inw(I) over R̃/(t) = R i.e., F̃ |t=0

is a minimal (entries of the differentials are now in (x1, ..., xn)) R-free resolution of R/inw(I).

Now let α = 1. Then F̃ |t=1 = F̃· ⊗R̃ R̃/(t − 1) is a resolution of R̃/Ĩ ⊗ R̃/(t − 1) ∼= R/I over R̃/(t − 1) ∼= R.
(However, this might not be minimal.)

But then F̃ |t=1 = G· ⊕H·. (where G is the minimal free resolution of R/I over R and H is a direct sum of
trivial complexes.) Therefore βij(R̃/̃i) = βij(R/I)⊕ βij(H·).

⋗ Cor: If there are no possible cancellations, then the βij(R/I) = βij(R/inw(I)). For example if R/inw(I) has
a linear resolution.....



Peder Thompson’s Notes 918 Computational Algebra - Alexandra Seceleanu 41

Nov. 25, 2013

⋗ What properties transfer between I and inw(I) (or LT (I))?

1) dimR/I = dimR/inw(I) = dimR/LT (I). (Krull dimension) (Pf: Fibers in a flat family have the same
dimension; OR use Macaulay’s Theorem.)

2) HFR/I(i) = HFR/inw(I)(i) = HFR/LT (I)(i) (Macaulay)

3) pdR/inw(I) ≥ pdR/I and regR/inw(I) ≥ regR/I (Peeva’s Thm).

4) If R/inw(I) is CM (dimR/inw(I) = n− pdR/inw(I)), then R/I is CM.

5) R/I is CM if and only if R/ginGrRevLex(I) is CM.

⋗ The Gröbner Fan

- There exist an uncountable number of monomial orderings. (e.g. every weight vector w ∈ Rn
≥0 such that

coord. of w are algebraically independent implies >w is a monomial ordering. >=>w/ ⇐⇒ w = λ ·w′ for
λ ∈ (0,∞).)

- Fix an ideal I.

⋗ Thm: Let I be an ideal. There are only finitely many distinct initial ideals of I.

⋗ Prop: If I is an ideal and LT<(I) = LT<′(I), then the reduced GBs of I w.r.t. < and <′ are identical.

⋗ The theorem + Prop give there exists finitely many reduced GBs for a fixed ideal I (letting monomial order
vary).

⋗ Cor: Let I be an ideal. There is a finite set that generates I and is a Gröbner basis for I w.r.t. any monomial
ordering.

Proof. This set is the union of the finite set of distinct reduced GBs of I.

⋗ Defn: The set from the Cor. is called a universal GB for I.

⋗ Fix I and a monomial ordering >. Recall, by a theorem of Bayer, there exists w ∈ Rn
≥0 s/t LT>(I) = inw(I).

⋗ Question: What are all the weight vectors w with the property that LT>(I) = inw(I)?

⋗ Defn: Let G be the reduced GB of I w.r.t. >. G = {g1, ..., gs}. LT>(I) =< LT (g1), ..., LT (gs). Say
gi = ui +

∑
j vij .

C>(I) := {w ∈ Rn
≥0 : ui ≥ wvij for 1 ≤ i ≤ s, ui = LT (gi), vij any other lower terms in g}

is the cone of weight vectors corresponding to I and the monomial ordering >.

⋗ Example: I =< x2 − y3, x3 − y2 + x >, >= GrLex with x > y. Then CGrLex(I) =?

A reduced GB for I w.r.t. GRLex is G = {y3 − x2, x3 − y2 + x} = {g1, g2}
Then

CGrLex(I) = {w = (w1, w2) ∈ R2
≥0 : y3 ≥w x2, x3 ≥w y2, x3 ≥w x}.

Recall, y3 ≥w x2 ⇐⇒ (0, 3) · (w1, w2) ≥ (2, 0) · (w1, w2). ⇐⇒ (−2, 3) · (w1, w2) ≥ 0 ⇐⇒ −2w1 + 3w2 ≥ 0

Similarly, x3 ≥w y2 ⇐⇒ (3, 0) · (w1, w2) ≥ (0, 2) · (w1, w2). ⇐⇒ (3,−2) · (w1, w2) ≥ 0 ⇐⇒ 3w1 − 2w2 ≥ 0

Also x3 ≥w x ⇐⇒ (3, 0) · (w1, w2) ≥ (1, 0) · (w1, w2). ⇐⇒ (2, 0) · (w1, w2) ≥ 0 ⇐⇒ 2w1 ≥ 0 (superflous
since (w1, w2) ∈ R2

≥0.)

Picture: two lines with slope of 3/2 and one with slope 2/3, the cone is the region between these two lines.

⋗ Fact: C>(I) is always a (geometric) cone. i.e., closed under addition of vectors and closed under multiplication
by non-negative scalars.
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⋗ Rmk: For any w in the interior of C>(I), we have LT>(I) = inw(I). For w on the boundary of C>(I), inw(I)
is NOT a monomial ideal.

⋗ Fact: The two distinct Gröbner cones of I intersect along a common face of each.

⋗ Example: The Grobner cones of I =< x2 − y3, x3 − y2 + x >: The cones are: regions bounded between the
lines with slopes 6, 4, 3/2, 2/3, 1/4, 1/7. In the example, label these cones (1)-(7). (4) corresponds to CGrLex

with x > y, (1) corresponds to CLex, w/ y > x, and (7) corresponds to CLex with x > y.

⋗ Defn: The Gröbner fan of I is the union of the Gröbner cones of I.

Dec. 2, 2013

⋗ Nathan talk on: The Gröbner Walk

⋗ Goal: Convert a RGB (reduced Gröbner basis) of I w.r.t. <1 to a RGB of I w.r.t. <2.

⋗ Example:

- R = k[x, y], I =< x2 − y3, x3 − y2 + x >.

- G0 =< y3 − x2, x3 − y2 + x > is a RGB of I w.r.t. grevlex, with x > y. (call this <1)

- Connect to RGB of I w.r.t. lex with x > y. (call this <2)

- ω0 = (1, 1) ∈ C<1
(I) and τ0 = (1, 0) ∈ C<2

(I) and α = (1, 2/3).

- inα(G0) = {y3 − x2, x3}. Does this generated inα(I)? Yes, since for all f ∈ I, LT<1
(f) = LT<1

(inα(f)),
by the definition of Grobner cone C<1

(I) and the fact that α ∈ C<1
(I).

- Use Buchberger’s Algorithm to compute H1, the RGB of inα(I) w.r.t. <2α . Note that α ∈ C<2α
(I).

(f <2α g ⇐⇒ multideg(f) · α < multideg(g) · α if = wf <2 g???).

H1 = {x2 − y3, xy3, y6}.

- Examine S = {hG0
: h ∈ H1} = {0, y2 − x, xy2 − y3}. So inα(h) = inα(h − h

G0
) for every h ∈ H1.

LT<2α
(I) =< LT<2α

(h− h
G0

: h ∈ H1 >.

Now, G′ = {h− h
G0

: h ∈ H1} = {x2 − y3, xy3 − (y2 − x), y6 − (x2
α − y3)} is a GB of I w.r.t. <2α .

Now G1 = {x2 − y3, xy3 − y2 + x, y6 − xy2 + x2} is a RGB of I w.r.t. <2α .

⋗ Lemma 1: If G is a RGB of I w.r.t. <1, then inω(G) is RGB of inω(I) w.r.t. <1, for all ω ∈ Rn
≥0.

⋗ Lemma 3: C<1
(I) = C<2

(I) if and only if LT<1
(g) = LT<2

(g) for all g ∈ RGB of I w.r.t. <1 (termination
condition).

⋗ Louigi: Maximal Bettei Numbers

⋗ Setup: k is a field with characteristic 0. A = k[x1, ..., xn] (with standard grading). I is monomial ideal. Then
define G(I) as the set of minimal monomial generators.

⋗ Defn: I is strongly stable if xim ∈ I implies xpm ∈ I for every 1 ≤ p ≤ i.

⋗ Notice: when char(k) = 0, Borel-fixed = strongly stable.

⋗ Defn: L is Lexicographic if for every j ∈ N, Lj is spanned by the first dimLj monomials in the lexicographic
order.

⋗ Fact: Lexicographic ideal is strongly stable. xim ∈ I for 1 ≤ p ≤ i xp < xi implies xpm < xim.

⋗ Theorem (Peeva): J homogeneous βi,i+j(J) ⊆ βi,i+j(inJ).

⋗ Theorem (Galligo, Bayer-Stillman): If J is homogeneous, C is any monomial order, then gin<J is Borel-
fixed.

⋗ Fact: The Hilbert series of J and gin<J are the same: HSgin<J = HSLT (gJ) = HSJ .
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⋗ We proved that there exists a Borel-fixed ideal I with the same HS of J such that βi,i+j(J) ≤ βi,i+j(I).

⋗ Fact: By Macaulay’s Theorem and Kruskal-Katona’s Theorem, there exists a Lexicographic ideal L with the
same Hilbert series of I.

⋗ Main Theorem: Let J be a homogeneous ideal of A. If L is the lexicographic ideal with the same HS, then

βi,i+j(J) ≤ βi,i+j(L)

for every i, j.

Proof. It suffices to show βi,i+j(I) ≤ βi,i+j(L when I is Borel-fixed.

Notation: m is a monomial, max(m) = max{i : xi divides m}. M a monomial ideal, then M#
J is the set of all

monomials in MJ . If M is a set of monomials, then ωp(M) = |{m ∈ M : max(m) = p}| and ω≤p(M) = |{m ∈
M : max(m) ≤ p}|. In particular, ω≤m(M#

J ) = dimk MJ .

Theorem (Green): If I is strongly stable and L is lexicographic with the same HS as I then ω≤p(L
#
J ) ≤

ω≤p(I
#
J ) for all p, J .

Lemma: I is Borel-fixed, then

βi,i+j = |I#J
(
n− 1

i

)
−

n−1∑
p=1

ω≤p(I
#
J )

(
p− 1

i− 1

)
−

n∑
p=1

ω≤p(I
#
j−1)

(
p− 1

i

)
.

Proof. By Eliahou-Kervaire,

βi,i+j(I) =
∑

m∈G(I)J

(
max(m)− 1

i

)
=

m∑
p=1

ωp(G(I)J)

(
p− 1

i

)
.

G(I)j = I#j \I#j−1 · {x1, ..., xn}. by the strongly stable property ...
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